
Enhancement of the scalability of an
infrastructure for support of a large scale

virtual and agent environment

A Dissertation submitted in partial
fulfilment of the requirements for the

degree of

MASTER OF SCIENCE

in Parallel and Scientific
Computation

in the

Faculty of Science

University of Reading

by

Oliver Otto

23. January 2001

Supervisors:

Dr. Dave Roberts
University of Reading
Great Britain

Dipl.-Ing. Gottfried Junghanns
Fachhochschule für Technik und

Wirtschaft Berlin
Germany

ACKNOWLEDGMENTS

The work in this thesis is a part of the COMRIS research project at the

Reading University. I would like to take this opportunity to thank all those

who have contributed to the work. Firstly, I would like to express my

gratitude to my supervisor Dr. Dave Roberts for all his support, guidance,

constructive criticism and ideas.

Furthermore, I am grateful to Robin Wolff who was very helpful whenever

I needed advice and information about all sorts of practical questions.

In addition, I would like to thank Iain Werry and Farshid Amirabdollahian

for reading through the whole dissertation and helping me with my

English.

Finally, I am grateful to my parents for their encouragement and support

over my whole study.

ABSTRACT

The dramatic improvements in global interconnectivity due to intranets,

extranets, and the Internet has led to an explosion in the number and

variety of new data-intensive applications. One of these applications are

virtual reality systems, with their virtual environments. Current research in

large-scale virtual environments can link hundreds of people and artificial

agents with interactive three-dimensional (3D) graphics, massive terrain

databases, global hypermedia and scientific datasets. One of these research

projects is the Co-Habited Mixed Reality Information Spaces (COMRIS).

A variety of network elements is required to scale up this virtual

environment to an arbitrarily large size and simultaneously connecting

thousands of interacting agents. The goal of this work is to show which

elements can be used to enhance the scalability of the communication

infrastructure. It is showing a generic overview of different design

possibilities like the ring or the hypercube topology.

i

TABLE OF CONTENTS

List of Figures...iii

Abbreviations ...iv

Glossary.. v

1 Introduction.. 1

1.1 Overview .. 1

1.2 Conceptual formulation.. 3

1.3 Organization of this thesis .. 5

2 Problems of network scalability.. 6

2.1 What is scalability?... 6

2.2 Conditions for a large scale virtual and agent environment 6

2.2.1 General Architecture.. 6

2.2.2 Subspaces .. 8

2.2.3 Publish groups ... 8

2.2.4 Communication across the infrastructure..................................... 8

2.2.5 Communication related requirements .. 9

2.2.6 Agent specific related requirements ... 9

2.3 Why do we need network scalability? .. 10

3 Possibilities to enhance the scalability.. 16

3.1 Different network structure... 17

3.1.1 Star topology, the current COMRIS topology............................ 17

3.1.2 Ring topology, expandable as the star.. 19

3.1.3 Bus topology, an impractical topology 23

3.1.4 Tree topology, not recommendable for COMRIS...................... 25

3.1.5 Hypercube topology, high debatable .. 27

3.1.6 Summary topologies.. 31

3.2 Centralized vs. decentralized architectures ... 33

3.3 Direct connections .. 36

3.4 Use subspace for address transport ... 37

3.5 Special name concept ... 38

 ii

4 Implementation, Integration and Tests.. 41

4.1 Description of existing COMRIS infrastructure.................................. 41

4.2 Implementation of direct connection .. 43

4.3 Implementation of address multicast .. 44

4.4 Implementation of special name concept.. 45

4.5 Description of Controlled Experiments... 47

4.6 Results of Experiments ... 50

4.6.1 Registration Performance .. 50

4.6.2 Test direct connections .. 51

4.6.3 Test address multicast .. 52

4.6.4 Test special name concept ... 52

4.6.5 Test number of applications per machine 54

4.6.6 Summery tests ... 54

5 Conclusion.. 57

5.1 Achieved status ... 57

5.2 Perspective .. 59

Bibliography... 60

 iii

LIST OF FIGURES

Number Page
Figure 1-1 COMRIS overview ... 2
Figure 1-2 The Virtal world of COMRIS... 3
Figure 2-1 COMRIS infrastructure ... 7
Figure 2-2 Secretary communication within the infrastructure 7
Figure 2-3 Direct links: a) point-to-point; b) multiple access........................ 10
Figure 2-4 Correspondence between OSI and IP protocol layer model......... 11
Figure 2-5 Switched network.. 12
Figure 2-6 Interconnections of networks .. 14
Figure 3-1 two user try to login with the same name 16
Figure 3-2 peer-to-peer communications between agents 17
Figure 3-3 Example for a star topology .. 18
Figure 3-4 Example for a ring topology.. 20
Figure 3-5 Example for a bus topology... 23
Figure 3-6 Example for a tree topology .. 25
Figure 3-7 consecutive numbering of a tree .. 26
Figure 3-8 Exapmle for a hypercube topology.. 28
Figure 3-9 A 3-dimesional hypercube... 28
Figure 3-10 Centralized vs. decentralized architectures 35
Figure 3-11 Example for a direct connection.. 36
Figure 3-12 unicast vs. multicast entry message ... 38
Figure 3-13 expample for a message path... 40
Figure 4-1 Event trace of the COMRIS infrastructure 42
Figure 4-2 Message flow diagram for direct connetion................................. 43
Figure 4-3 Flow diagram for address multicast... 44
Figure 4-4 each agent has an extension... 45
Figure 4-5 the extension is saved at the secretary ... 46
Figure 4-6 Secretary Pool registration times ... 50
Figure 4-7 Number of registrations per second ... 50
Figure 4-8 using direct connections .. 51
Figure 4-9 no direct connections ... 51
Figure 4-10 influence of address multicast ... 52
Figure 4-11 using name concept with 3 SPs ... 53
Figure 4-12 no name concept with 3 SPs.. 53
Figure 4-13 using name concept with 5 SPs ... 53
Figure 4-14 no name concept with 5 SPs.. 53
Figure 4-15 running 1 SP per machines .. 54
Figure 4-16 running 2 SPs per machines .. 54
Figure 4-17 original COMRIS version ... 55
Figure 4-18 COMRIS version with all updates ... 55

 iv

ABBREVIATIONS

COMRIS Co-Habited Mixed Reality Information Spaces

3D three-dimensional

CC Conference Center

SP Secretary Pool

TCP Transmission Control Protocol

UDP User Datagram Protocol

VE Virtual Environments

 v

GLOSSARY

Address A name or token that identifies a network
component. In local area networks (LANs), for
example, every node has a unique address.

Agent Autonomous Software which is searching and
summarize information to send it in the real world

Broadcast One-to-all, unreliable communication

Conference Center The controlling central entity of the COMRIS
system that manages global conference information
including registration

Degree The degree of a node is defined to be the number of
its neighbours

Diameter The longest path between any two nodes

Entity A client of the infrastructure (For example an agent,
a database or a text generation system

Links A connection between nodes

Multicast One-to-many, unreliable communication

Node In networks, a processing location. A node can be a
computer or some other device, such as a printer.
Every node has a unique network address

Port In TCP/IP and UDP networks, an endpoint to a
logical connection. The port number identifies what
type of port it is.

Publish Group Abstraction of multicast group where only the
creator is allowed send messages and add members

 vi

Scalability Refers to how much a system can be expanded.
Capable of being changed in size and configuration.
The term by itself implies a positive capability. For
example, "the device is known for its scalability"
means it can be made to serve a larger number of
users without breaking down or requiring major
changes in procedure

Secretary Interface between agent and infrastructure

Secretary Pool Interface for a pool of agents and the infrastructure

Socket The mechanism for creating a virtual connection
between processes

Subspace A region of the virtual space, with given properties
and functionality to aid group interaction between
agent interaction.

Unicast One-to-one, reliable communication

Virtual Space The space through which agents meet and interact

 1

C h a p t e r 1

1 Introduction

1.1 Overview

The dramatic improvements in global interconnectivity due to intranets,

extranets, and the Internet has led to an explosion in the number and

variety of new data-intensive applications. One of these applications are

virtual reality systems, with their virtual environments. Current research in

large-scale virtual environments can link hundreds of people and artificial

agents with interactive three-dimensional (3D) graphics, massive terrain

databases, global hypermedia and scientific datasets. One of these research

projects is the Co-Habited Mixed Reality Information Spaces (COMRIS).

The COMRIS project aims to develop, demonstrate and experimentally

evaluate a scalable approach to integrating the Inhabited Information

Spaces schema with a concept of software agents. The COMRIS vision of

co-habited mixed-reality information spaces emphasizes the co-habitation

of software and human agents in a pair of loosely coupled spaces, a virtual

and a real one. However, this project does not pursue the perceptual

integration of real and virtual space into an augmented reality. Instead, the

coupling aims at focusing the large potential for useful social interactions

in each of the spaces, so that they become more manageable, goal-directed

and effective.

The COMRIS project uses the conference center as the thematic space and

concrete context of work. The conference center is a structure of places for

registration, presentation, refreshment, and so on. At a conference, people

gather to show their results, see other interesting things, find interesting

people, meet officials in person, or engage in any kind of discussion. The

possibilities of interaction at such an event are enormous, it is very

 2

information-intensive, and the great diversity of topics and purposes that

are being addressed make it difficult to get everything done.

In the mixed-reality conference center, real and virtual conference

activities are going on in parallel (as presented in Figure 1-1). Each

participant wears its personal assistant (PA), an electronic badge and

earphone device, wirelessly hooked into an Intranet. This personal assistant

– the COMRIS parrot - realizes a bi-directional link between the real and

virtual spaces. It observes what is going on around its host (whereabouts,

activities, other people around), and it informs its host about potentially

useful encounters, ongoing demonstrations that may be worthwhile

attending, and so on. Several personal representatives (PRA), the software

agents that participate on behalf of a real person in the virtual conference,

gather this information. Each of these has the purpose to represent, defend

and further a particular interest or objective of the real participant,

including those interests that this participant is not explicitly attending [3].

To accomplish this task it is necessary that each agent communicate with

the other agents in the virtual space. For this purpose, the agents send

unicast messages (a point-to-point connection). Each agent can only

Figure 1-1 COMRIS overview

 3

communicate with known agents, which they acquaint in special interest

groups (also called subspaces). Such a subspace (which is centrally

managed) is combing agents with a familiar topic and a place to get the

name of other agents. Subspaces are like a chat room on the Internet,

everyone can join, leave, listen and speak. In contrast to the subspaces

exists publish groups. They are like a radio channel, everyone can listen

but only one agent can send (the owner of this group).

Over these places in the virtual world, it is possible to find people in the

real world with similar interests and to make real conversation (as

presented in Figure 1-2).

1.2 Conceptual formulation

A variety of network elements are required to scale up virtual

environments (VEs) to arbitrarily large sizes, simultaneously connecting

thousands of interacting agents and all kinds of information objects. VE

construction can include concepts and components from nearly any subject

Figure 1-2 The Virtal world of COMRIS

 4

area. The variety of desired connections between people and agents can be

summarized by the slogan “connecting everyone to everyone”. As diversity

and detail of virtual environments increase without bound, network

requirements become the primary bottleneck.

The virtual space is the environment through which COMRIS agents will

communicate and function. The virtual space is not only a conceptual

home to hundreds or even thousands of agents, but also to other

components with which these agents communicate. All such components

and agents are termed entities and communicate via the virtual space

communication infrastructure.

If n agents work in the virtual space and each agent sent each other agent

one message, then n*(n-1) messages are generated to transmit over the

infrastructure. For example, a conference with 100 members (per member

exists 5 interest based agents) can generate 250.000 messages and a

conference with 1000 members can generate 25 million messages [8]. This

O(n²) transport problem needs a very scalable infrastructure to transmit all

these messages with a small delay. Within the context of COMRIS,

scalability concerns the ability to increase the number of users and agents

without degrading the usability of the system [2] [9].

This work is trying to show ways to enhance the scalability of the current

COMRIS infrastructure. It is discussing over theoretical possibilities and

implementing some of then. The COMRIS Project started in 1998 and will

finish in December 2000. Due to this condition, this work is trying to

implement some changes to enhance the scalability and is talking about

alternatives for projects with similar facts. The tests in chapter 4 show the

effect of a small change on the whole infrastructure.

 5

1.3 Organization of this thesis

This thesis is organised as follows:

- a short overview of COMRIS

- a conceptual formulation of my work

- what is scalability and why is it useful

- an overview about the conditions for a system like COMRIS

- a short brief introduction to addressing and routing (to understand
the later sections)

- an overview about different kind of topologies and their influence
on COMRIS

- further possibilities to enhance the scalability (direct connection,
address multicast, etc.)

- analysis of some implementations (direct connection, address
multicast, special name concept)

- conclusion

 6

C h a p t e r 2

2 Problems of network scalability

2.1 What is scalability?

Scalability is a popular buzzword that refers to how well a hardware or

software system can adapt to increased demands. For example, a scalable

network system would be one that can start with just a few nodes but can

easily expand to thousands of nodes. Scalability can be a very important

feature because it means that you can invest in a system with confidence

you won't outgrow it.1

2.2 Conditions for a large scale virtual and agent environment

Each system has conditions, which describe the behaviour and the

restrictions for the system. The following section defines and identifies the

required specification, which is needed by the communication

infrastructure of a virtual environment like COMRIS. It focuses on the

communication architecture and on different technical aspects that play a

role in the implementation of the virtual space of COMRIS [2].

2.2.1 General Architecture

The communication infrastructure provides support for dialogue between

agents. An Agent interface to the infrastructure exists through secretaries

and an individual secretary supports each agent. Both the implementation

of the infrastructure and the location of peers are invisible to agents. In

order to communicate to a peer or group of peers, an agent simply passes a

message to the secretary.

1 http://webopedia.internet.com/TERM/s/scalable.html

 7

An overview of the infrastructure is presented in Figure 2-1, shown from

the perspective of the Infrastructure Developer.

The sequential initialisation of the infrastructure (in terms of

communications from new agents), different type of communications

services available from the infrastructure, is outlined in Figure 2-2.

The numbers in parenthesis indicate the logical sequence of messages and

the subscript indicates the type of communications, where U indicates

unreliable communications protocol (Multicast), while T denotes a reliable

communications protocol (TCP). The sequence is as follows:

Secretary
Pool

Secretary
Pool

S
ecretary

System Kernel

Infrastructure

Agent Agent Agent Agent Agent

Conference
Centre (CC)

PRA

PRA

PRA

PRA = Personal
Representative Agent

Figure 2-1 COMRIS infrastructure

Secretary
Pool

Secretary
Pool

S
ecretary

System Kernel

Infrastructure

Agent Agent Agent Agent Agent

Conference
Centre (CC)

PRA

PRA

PRA

PRA = Personal
Representative Agent

(i)
T

(ii)
T

(i)
T

(ii)
T

(v) T
(v)

T

(iii)
T (iv) U

Figure 2-2 Secretary communication within the infrastructure

 8

(i) An agent communicates with kernel to register

(ii) The kernel accepts the registration.
(iii) An agent joins in a subspace via the central kernel.

(iv) The infrastructure sends a message to all member of the subspace,
with the information about the new agent.

(v) Subsequent messages requiring reliable communications are sent
via the central server or direct connections.

2.2.2 Subspaces

Subspaces represent (possibly overlapping) interest-based regions of the

virtual space. A subspace may be thought of as a message forwarding

service for groups of agents with a common interest. An agent may

communicate to one or, sequentially, to all other members of a subgroup to

which it belongs.

2.2.3 Publish groups

A publish group supports unidirectional one-to-many communication and

is analogous to a mail distribution service. In contrast to Subspaces (to

which an agent may request to join and leave, see below) membership of a

Publish Group is under the direct and sole control of the creator agent.

2.2.4 Communication across the infrastructure

The infrastructure only supports the reliability of communication between

secretaries. The secretary is not responsible for whether or not the agent

actually reads or processes the message.

One-to-one communication between secretaries is based on TCP streams

and may thus be considered reliable. Guaranteeing the reliability of one-to-

many communication can have implications on timeliness, scalability and

error recovery. For this reason reliable one-to-many communication is

provided as an option that may be selected by the creator of the group.

Both Subspaces and Publish groups will be given this facility.

 9

2.2.5 Communication related requirements

Communication - Agents must be able to communicate with each other.

Point to point messaging is a requirement. The Personal Agents are able to

uniquely identify the senders and receivers of messages.

Communication reliability - When an agent receives a message it must

also process the message. The agent is not obliged to really act according

to the instruction in the message. It may decide not to perform what is

stated in the message, but the agent may not simply dump or ignore the

message before parsing it. This shall result in a non-repudiation

communication where an agent can not falsely deny that it ever received

the message.

2.2.6 Agent specific related requirements

The following requirements are described from the perspective of the

communication infrastructure.

Identification – It must be possible to uniquely identify each agent.

Personal Agents must have a unique ID (e.g. name). This uniqueness of

this name is managed by the virtual space (i.e. the Agent Management

System where agents can register themselves)

Autonomous – Personal Agents must be able to reason about their own

state and act according to it. The internal state of the agent is not only

changed through environmental stimuli, i.e. input and outputs, but also

through internal processes.

Scalability – The agent performance may not drop unacceptably, if the

number of competing personal representation agents grows. The personal

agent must efficiently handle the management and communication

 10

2.3 Why do we need network scalability?

A network must provide connectivity among a set of computers.

Sometimes it is enough to build a limited network that connects only a few

select machines. In fact, for reasons of privacy and security, many private

(corporate) networks have the explicit goal of limiting the set of machines

that are connected. In contrast, other networks (of which the Internet is the

prime example) are designed to grow in a way that allows them the

potential to connect all the computers in the world. A system that is

designed to support growth to an arbitrarily large size is said to be scalable

[1].

Network connectivity occurs at many different levels. At the lowest level, a

network can consist of two or more computers directly connected by some

physical medium, such as a coaxial cable or an optical fiber. Such a

physical medium is called a link or connection and the computers that are

connected through such a link, are called nodes. As illustrated in Figure

2-3, physical links are sometimes limited to a pair of nodes (such a link is

said to be point-to-point), while in other cases, more than two nodes may

share a single physical connection (such a connection is said to be

multiple-access). Whether a given connection supports point-to-point or

multiple-access connectivity depends on how the node is attached to the

connection. It is also the case that multiple-access connection are often

limited in size, in terms of both the geographical distance they can cover

and the number of nodes they can connect. In the COMRIS project, the

a)

b)

Figure 2-3 Direct links: a) point-to-point; b) multiple access

 11

links are not physical connections, they are logical links, but they have the

same interpretation as the application layer (see Figure 2-4). This layer is

represented by the user interface, agent intelligence, and so on. In contrast

to physical networks (which are to find on IP Level 1 to 3), the COMRIS

communication infrastructure is resided on IP Level 4. However, this is not

a reason not to use physical network designs for a logical infrastructure.

A network with nodes can be described by two properties. Two nodes are

neighbours if there is a link connecting them. The degree of a node is

defined to be the number of its neighbours. A high degree means that a

node has many direct connections to other nodes. For example, in Figure

2-3a the degree is 1 and in Figure 2-3b the degree is n (number of nodes on

the bus). The diameter of a network is the longest path between any two

nodes. A small diameter is preferable, because it decreases the delay of a

message through the infrastructure. In Figure 2-3 both examples have a

Application

Presentation

Session

Transport

Network

Data link

Physical

Data link

Internet

Transport

Process /
Application

OSI IP

Figure 2-4 Correspondence between OSI and IP protocol layer model

Applications invoke TCP/IP services, sending and
receiving messages or streams with other hosts.
Delivery can be intermittent or continuous. The
COMRIS infrastructure is resided in this layer.

Provides host -host packetized communication
between applications, using either reliable delivery
connection-oriented TCP or unreliable delivery
connectionless UDP. Exchanges packets end-end with
hosts.

Encapsulates packets with IP datagram which
contains routing information, receive or ignores
incoming datagrams as appropriate from other hosts.
Checks datagram validity, handles network error and
control messages.

Includes physical media signalling and lowest level
hardware functions, exchanges network-specific data
frames with other devices. Includes capability to
screen multicast packets by port number at the
hardware level.

 12

diameter of 1. These properties are useful to recognise the scalability of a

communication infrastructure.

If computer networks were limited to situations in which all nodes are

directly connected to each other over a common physical medium, then

networks would be very limited in the number of computers they could

connect. On the other hand, the number of wires coming out of the back of

each node would quickly become both unmanageable and very expensive.

For a more logical environment, like the COMRIS infrastructure, is it

meaning, that there are more open socket connections between the nodes

and that needs more memory (which is not endless available). Fortunately,

connectivity between two nodes does not necessarily imply a direct

physical connection between them. Indirect connectivity may be achieved

among a set of cooperating nodes. Consider the following two examples of

how a collection of computer can be indirectly connected.

Figure 2-5 shows a set of nodes, each of which is attached to one or more

point-to-point links. Those nodes that are attached to at least two

connections run software that forwards data received on one link out on

another. If organized in a symmetric way, these forwarding nodes form a

switched network. There are numerous types of switched networks, of

which the most common are packet-switched and circuit-switched. The

Figure 2-5 Switched network

 13

important feature of packet-switched networks is that the nodes in such a

network send discrete blocks of data to each other. Think of these blocks of

data as corresponding to some piece of application data such as a file, a

piece of email, or an image. Each block of data is called either a packet or a

message.

Packet-switched networks typically use a strategy called store-and-

forward. As the name suggests, each node in a store-and-forward network

first receives a complete packet over some link, stores the packet in its

internal memory, and then forwards the complete packet to the next node.

In contrast, a circuit-switched network first establishes a dedicated circuit

across a sequence of links and then allows the source node to send a stream

of bits across this circuit to a destination node. The major reason for using

packet switching rather than circuit switching in a computer network is

efficiency.

The cloud in Figure 2-5 distinguishes between the node on the inside that

implement the network (they are commonly called switches, and their sole

function is to store and forward packets) and the nodes on the outside of

the cloud that use the network (they are commonly called hosts, and they

support users and run application programs). In general, this document

uses a cloud to denote any type of network, whether it is a single point-to-

point link, a multiple-access link or a switched network.

 14

A second way in which a set of computers can be indirectly connected is

shown in Figure 2-6. In this situation, sets of independent networks

(clouds) are interconnected to form an internet work or Internet for short. A

node that is connected to two or more networks is commonly called a

router or gateway and it plays much the same role as a switch. It forwards

messages from one network to another. Note that an internet can itself be

viewed as another kind of network, which means that an internet can be

build from an interconnection clouds to form lager clouds. Router,

gateways and switches are terms from physical networks. The COMRIS

infrastructure takes over this part of the kernel, but the rule is the same.

Just because sets of hosts are directly or indirectly connected to each other

does not mean that we have succeeded in providing host-to-host

connectivity. The final requirement is that each node must be able to say

which of the other nodes on the network it wants to communicate with.

This is done by assigning an address to each node. An address is a byte

string that identifies a node. The network can use a node’s address to

distinguish it from the other nodes connected to the network. When a

source node wants the network to deliver a message to a certain destination

node, it specifies the address of the destination node. If the sending and

receiving nodes are not directly connected, then the switches and routers of

the network use this address to decide how to forward the message toward

Figure 2-6 Interconnections of networks

 15

the destination. The process of determining systematically how to forward

the message toward the destination node based on its address is called

routing.

This brief introduction to addressing and routing has presumed that the

source node wants to send a message to a single destination node (unicast).

While this is the most common scenario, it is also possible that the source

node might want to broadcast a message to all the nodes on the network.

Or a source node might want to send a message to some subset of the other

nodes, but not all of them, a situation called multicast. Thus, in addition to

node-specific address, another requirement of a network is that it supports

multicast and broadcast addresses [1]. This is used in the publish groups

and subspaces, which are explained at section 2.2.2 and 2.2.3. The nodes

can be agents, secretaries or kernels in the COMRIS project and the

address is the name of an agent. It is not necessary for an agent to know the

path (routing way) in the infrastructure, only the receiver name is important

(as described in section 2.2.1). The infrastructure is searching for the

shortest path to transmit the message. Nevertheless, for the infrastructure

design it is important to think about the routing path. Chapter 3.1 describes

different possibilities to keep this path as small as possible.

 16

C h a p t e r 3

3 Possibilities to enhance the scalability

With a look at the specification of COMRIS (see section 2.2), we can

imagine that a scalable system has to handle thousands or millions of

messages, because each agent has to be able to communicate with each

other agent. Also it is necessary to have a central point for the name

management, only with such a point it is possible to uniquely identify the

agent. Consider the following two examples of what situations the

infrastructure has to handle in the real system.

Figure 3-1 shows two users, which try to login to the VR space at the same

time and with the same name. If we look to the COMRIS specification, we

can see that this situation is not allowed, which means that one user should

get an error message and this user has to try again with another name.

COMRIS
VR space

user 1

user 2

Terminal

Terminal

try login
with name

"ABC"

try login
with name

"ABC"

Agent
"ABC"

Agent
"ABC"

Figure 3-1 two user try to login with the same name

 17

The second example is a usual communication between two agents, which

is shown in Figure 3-2. There are no restrictions, which can cut off a

connection between any two agents.

There are different ways to enhance the scalability of a system like

COMRIS. The following sections describe some ideas, which can be useful

to make the infrastructure more flexible and faster.

3.1 Different network structure

The following discussion of the properties of different topologies is based

on a collection of nodes that communicate via links. These sections speak

about some ways to distribute the traffic or even to enhance the scalability

for the nodes.

3.1.1 Star topology, the current COMRIS topology

The star topology is a very popular network structure. Most computer

centers use the star. This topology is based on a central node (sometimes

called the host) in the “middle” and all other nodes are arranged around

this central point. The central node may just route all transmissions to their

respective destinations or also carry out some processing of its own. Data

is transmitted through the networks by the host calling each node in turn to

determine if it has any data to transmit. (In some star networks, the

kernel

secretary pool 2secretary pool 1

Agent1 Agent2

Agent3

secretary pool 3

peer-to-peer communication

peer-to-peer communication
peer-to-peer communication

Figure 3-2 peer-to-peer communications between agents

 18

transmission is instigated by the individual nodes, which send an interrupt

to the host to signal that it has data ready to be transmitted).

The degree of such a system is usually one (except the degree of the central

node, which is depend of the number of nodes) and in addition, the

diameter is very small with two. If an agent wants to speak with other

agents, the communication goes through the central node. However, this is

the bottleneck of this topology.

In this system, there is no problem with both the examples (see the

beginning of this chapter). Even with the central node, there exists only one

entity-list (in this list all agents are registered, with name, address and port

number) and a double registration with the same name is not possible. The

star topology is the current COMRIS network structure.

This topology is very easy to implement with all the COMRIS

specifications, but unfortunately not very scalable. Chapter 4.6.1 shows the

speed of the registration of up to 5000 agents and transmitting up to 20000

messages as soon as possible. In comparison with further methods this

infrastructure is very slow (which are described in 3.1.5).

Figure 3-3 Example for a star topology

the bottleneck

 19

Star advantages:

- The response time is generally very fast, but this depends mostly
upon the power of the host.

- Concurrent processing by the host is possible.

- Doubtlessly the uniquely identification (because the central node
has the entire entity-list)

Star disadvantages:

- If the host fails, the whole network fails.

- The central node can only handle a certain number of nodes and the
network cannot be expanded beyond this number (section 4.6.1
shows some results).

- As each node has its own communication line, there is a large cost
in its initial installation.

- The central node is the bottleneck (entire communication is going
over this point)

3.1.2 Ring topology, expandable as the star

Ring networks consist of nodes directly linked to each other by a single

communication line. Messages travel from node to node around the ring

until it reaches its correct destination. As with the bus network (described

in the next section), each node must be capable of recognizing its own

address to receive a message. If a message is passed to a node, which is not

the correct destination, the message is transmitted to the next node in the

ring.

The ring with a token-based concept

To control access to the line such that two messages are not transmitted

simultaneously, a method called "token passing" is implemented. A token

is a frame of bits, which is passed from one node to the next. The token

may be "empty" or it may contain a message. If an empty token is received

 20

and the node wishes to transmit data, it holds the token and writes into it:

the destination address, its own address and the message itself. The token is

then passed onto the next node. As the token is no longer marked as

"empty", it ensures that nodes cannot transmit messages at the same time.

When the token is finally passed to the node which has an address

corresponding to the token's destination address, that node reads the

message and then marks the token as being read. The token is then passed

on to the next node and continues to be passed around the ring until it

completes a full circuit and reaches the node, which originated the

message. It is only at this point that the message is erased and the token is

again marked as being "empty".

A ring of n nodes has a degree of two, because the node is always

connected with two other nodes. The diameter of a ring grows as more

nodes are added, so it is n/2 for a bi-directional ring. [5]

The ring with atomic-broadcast concept

If the ring uses a token to synchronize the message transfer in the network,

there is no problem with the agent registration or with peer-to-peer

communication. Nevertheless, a disadvantage of the token system is the

delay-time. A message can only be sent if the node has the token. Another

Figure 3-4 Example for a ring topology

the ring

 21

way to use the ring network topology and to be sure that the unique name

concept of COMRIS is still possible is to use a reliable broadcast [17].

The reliable broadcast performs two phases of broadcast communication.

A node knows that a message is reliably broadcast if the message (phase 1)

and the related acknowledgment (phase 2) of all nodes are received. The

atomic broadcast is an extension of the reliable broadcast. An additional

numbering algorithm and sorting technique are used in the atomic

broadcast. It ensures a globally unique order of broadcasted messages at all

nodes, so that each node knows that every node got the message in an

unique order, i.e. who tried the registration at first, if two secretaries try to

register the same name.

The atomic broadcast concept allows communication between nodes

without waiting for a token, i.e. for forwarding a message. However, it

allows also the unique name concept for agent and publish group /

subspace registration. With this concept it is possible to decrease the delay

for the whole message transfer and thus increase the scalability.

The ring is a good way to enhance the scalability of the COMRIS

infrastructure. This topology is easy to implement and much more scalable

than the star network. Additional nodes can be added without effort and

these nodes can be used for new secretary pools or kernels (which increase

the number of members). If a node gets a message from a connected

secretary or from a neighbour node, then this node has to wait for the

token. With the token it is possible to send all messages, which arrived

since the last time the node got the token. To prevent a node from keeping

a token for a long time (while sending lots of messages) it is useful to use a

maximum time to hold the token to send or to use instead the atomic

broadcast concept. However, with the ring it is easy to use more than one

kernel node or to use a distributed system (see section 3.2). Only the

 22

overhead of transmitting a message is higher than the star topology,

because the message transport needs additional operating cost.

Ring advantages:

- Very good for a medium number of nodes which require very high
transmission speeds.

- Expansion is easily achieved.

- Unique registration is not a problem, due to using a token or atomic
broadcast.

Ring disadvantages:

- Transmission delays are long even with light traffic.

- Each node must be turned on for the network to operate. (Or each
node's attached network interface must be continually active.)

- Failure of a single node will halt a unidirectional ring network.

 23

3.1.3 Bus topology, an impractical topology

A bus topology is one in which all devices connect to a common, shared

connection (sometimes called the backbone). Most bus networks broadcast

signals in both directions on the backbone connection, enabling all nodes

to directly receive the signal. Some buses, however, are unidirectional:

signals travel in only one direction and can reach only downstream

devices.

Any node can communicate with any other node by broadcasting its

message on the bus. All nodes continuously monitor the bus and when a

message is detected which has the correct address code attached, that node

acts upon the transmission. (Each node has its own network address.)

Before any node may transmit a message, it must first "listen" to the bus to

determine if any other transmissions are currently being broadcast. Once it

determines that the bus is clear, it commences transmission. This process is

known as "contention".

The degree of this network structure is unpredictable, because it depends

on the number of nodes, which are connected to the bus. On the other side,

the diameter is one due to all nodes are connected on one link.

Figure 3-5 Example for a bus topology

the bus is using multicast

 24

Due to a missing central node (like in the star network), it is a problem to

register two agents with the same name. A solution for this problem is to

specify a node as the registration node (only this node can register an

agent) or to use a token. With using a token, this structure is no longer a

bus topology it is a ring topology (discussed in the previous section).

The bus is unsuitable for the COMRIS infrastructure. Not only is the name

management difficult. The key problem is the information transmission at

the bus, every message is broadcast to the other nodes on the bus. This

creates a huge overhead for each message. For a small system with not

more then 100 agents and an average of 100 messages per minute, this

system maybe possible. For example, if we suppose that the broadcast of a

message needs 10ms, than it needs 1 sec to send 100 messages but 100 sec

for 10000 messages. However, a huge amount of messages makes the

whole infrastructure extremely slow.

Bus advantages:

- Good for small networks with low traffic. (ie: Data is not
frequently transmitted by the nodes.)

- Easy initial installations and easily expanded by adding extra
nodes.

- If any one node fails, only the part behind that node is affected.

Bus disadvantages:

- The response time degrades rapidly as the data transmission load
increases.

- Tapping into the bus causes transmission signals to be distorted.

- Unique registration is not warranted (no central registration).

- The bus is broadcasting each message and this increase the
overhead.

- For logical infrastructures this is not suitable, the bus is more a
physical topology.

 25

3.1.4 Tree topology, not recommendable for COMRIS

The tree topology is similar to the star. A tree has three different types of

nodes, namely a root node (or central node), interior node and leaf node,

each with different degree. Usually, only the leaf node is connected to

other component of the network (i.e. to the secretaries).

The degree of this network structure is three (for a bi-directional tree) and

the diameter is 2*log N (where N is the number of nodes). A high diameter

makes the communication path for a message from one agent to another

one very long. That means that the delay for a message can be very high.

The registration example (see beginning of this chapter) can be a problem,

if the registration is not in the root node. If the registration in the leaf or

interior node, than is a system needed, which prevents two different nodes

registering the same name at the same time. Registration should be done in

the root node, otherwise we might assign two different nodes a unique.

After a successful registration or deregistration, the root has to send an

update of the entity-list to all the other nodes.

Figure 3-6 Example for a tree topology

the tree

 26

A big problem in the tree is to find the direct way to another node of the

tree. However, this is important to transmit a message or to register /

deregister an agent. A solution to this problem is to use a special name

concept for the nodes. Each level of the tree has it own number and in

addition there exists a consecutive numbering from the left to the right side

of each level (as presented in Figure 3-7).

The extension of this tree is only to the right side and downward possible

(it avoids a conflict with the consecutive numbering). For communication

between two nodes it is now possible to calculate the path (it is necessary

to go up or down). Without numbering, it is still possible to send the

message to the root (which should have all addresses) to forward the

message.

Multicast method, which is often used for physical trees, is not useful for

logical trees as it will create huge amount of traffic over the whole tree.

That would make the system very busy and decrease the scalability.

How useful is the tree for the COMRIS infrastructure? This is depending

on the kind of traffic. The star, bus and ring topology have one thing in

common, all nodes have contact with each message. The tree has a

different concept and with a lot of “local” traffic (only over one or two

nodes) is the tree to prefer. However, systems like COMRIS, which

generate traffic through the whole infrastructure all the time, has a big

1.1

2.1

3.1

4.1
4.2

3.2
3.3

3.4

2.2

Figure 3-7 consecutive numbering of a tree

 27

bottleneck – the root. It is like the star, but the overhead for each message

is bigger.

Tree advantages:

- Expansion is easily achieved by adding extra nodes.

- The diameter of a tree (2*logN) is smaller then the diameter of a
ring (N/2)

Tree disadvantages:

- Transmission delays can be long with a big tree.

- The network traffic near the root increase with a higher number of
messages through the network.

- If any one node fails, the part beyond this node is affected (If the
root fails, the whole network fails).

- It is not easy to find a specific node in the tree, it needs a special
routing algorithm.

- Unique registration is not warranted, unless the root node is used
for it.

3.1.5 Hypercube topology, high debatable

In a highly scalable topology, more nodes can be added without severely

increasing the amount of logic required to implement the topology and

without increasing the diameter. Such a topology is the hypercube. A link

connecting two nodes defines a 1-dimensional “cube”. A square with four

nodes is a 2-dimensional cube, and a 3D cube has eight nodes. This pattern

reveals a rule for constructing an n-dimensional cube: begin with an (n-1)-

dimensional cube, make an identical copy, and add links from each node in

the original to the corresponding node in the copy. Doubling the number of

nodes in a hypercube increases the degree by only one link per nodes, and

likewise increases the diameter by only 1 path [1].

 28

Communication in a hypercube is based on the binary representation of

node IDs. The nodes are numbered so that two nodes are adjacent if and

only if the binary representations of their IDs differ by one bit. For

example, nodes 0110 and 0100 are immediate neighbours but 0110 and

0101 are not. An easy way to label nodes is to assign node IDs as the cube

is constructed. When you copy an (n-1)-dimensional cube, make sure the

corresponding nodes in the two copies have the same IDs. Then extend all

the IDs by one bit. Append a 0 to the IDs of nodes in the original cube, and

append a 1 to the IDs of nodes in the copy.

Node IDs are the basis for a simple algorithm for routing information in a

hypercube. An n-dimensional cube will have n-bit node IDs. Sending a

Figure 3-8 Exapmle for a hypercube topology

dimension 1

dimension 0

dimension 2

101

100

111

110

010

011 001

000

Figure 3-9 A 3-dimesional hypercube

the hypercube

 29

message from node A to node B can be done in n cycles, where on each

cycle a node will either hold a message or forward it along one of its links.

On cycle i the node that currently holds the message will compare bit i of

its own ID with bit i of the destination ID. If the bits match, the node holds

the message. If they don't match, it forwards the message along dimension

i, where dimension i is the dimension that was added in the ith step of the

construction of the cube (i.e. it is the same “direction” at all nodes) [5].

The hypercube has the problem that a unique registration is only possible

with a central node (which is not existing in a hypercube). A solution is a

combination from hypercube and central node. It means that a series of

nodes assume the central node part. All registrations and deregistration has

to proceed on this special nodes. To avoid double registrations, it is

necessary that all these special nodes be connected together, i.e. in a ring

structure (see section 3.1.2). For the first example (see beginning of this

chapter) it means that the registration request has to forward to the nearest

central node, which can execute the request. However, to speed-up this

procedure it is useful for each node to know the nearest central node. This

can be achieved by calculating the shortest path to this special node. For

example, each node has to know the address of these nodes and can

compute the shortest path, using their own address (using a XOR over both

addresses).

Unfortunately, the hypercube is not linear scalable. Each new dimension

doubles the number of nodes, therefore, it is not possible to add only one

node. To avoid one sided network load, it is necessary to distribute the load

over the new nodes. This needs a special algorithm to spread the existing

infrastructure over the whole hypercube. However, with the knowledge

about the prospective infrastructure size (i.e. the maximum of conferee) it

is also possible to start the hypercube with a stable dimension.

 30

Broadcasting from Node x in an n dimensional binary hypercube can be

performed as follows. First, Node x makes n copies of the broadcast traffic

and forwards it to its n outgoing links. Then, a node receiving broadcast

traffic on its dimension-k link forwards that traffic to its outgoing links that

correspond to dimensions 0 through k – 1. Optimal and reliable

broadcasting algorithms in hypercube can be found in [6] and [7].

Hypercube advantages:

- Fault-tolerant

- Very good for a high number of nodes.

- The shortest path between any two nodes is the dimension of the
hypercube.

- If any one node fails, there are (n-1) paths left.

Hypercube disadvantages:

- Expansion needs a increasing of the dimension by one and doubles
the number of nodes.

- It is only useful for big network structure.

- Unique registration is not warranted, unless using a special
registration model.

- It needs a complex algorithm, to calculate the spreading of the
network (if there a change to the next dimension).

 31

3.1.6 Summary topologies

The previous sections described some different infrastructures. The word

‘node’ can be replaced by the word ‘kernel’, if we look at the COMRIS

project. For this case, all these network structures are a substitution for the

single kernel from the current existing infrastructure. The decision over the

correct infrastructure should be chosen at the beginning of such a project.

Only with the knowledge of the purpose and the specification, is it possible

to make the correct choice of the kind of topology. This choice has an

influence on the flexibility and scalability. It is a difficult decision to

decide which topology is the best for an infrastructure like COMRIS. Only

the star was implemented in the COMRIS infrastructure. Unfortunately,

this work is written at the end of the COMRIS project and therefore

another topology not implementable yet (except the star network).

However, on the point of this work it is possible to say that the star

topology is suitable for the COMRIS infrastructure. Until a few thousand

agents (1000-10000) are connected over the secretaries to the

infrastructure, the star works well (this is equivalent to a conference with

1000 members). Everything that is bigger should use another topology, like

the ring or the hypercube.

Another desirable property of interconnection networks is node symmetry.

A node symmetric network has no distinguished node, that is, the “view”

of the rest of the network is the same from any node. Rings and hypercubes

are all node symmetric. Trees and stars are not. When a topology is node

asymmetric, a distinguished node can become a communications

bottleneck [5].

Table 3-1 gives an overview of the different topologies and their assets and

drawbacks.

 32

1) COMRIS Conditions possible or not
2) n = Number of nodes
3) only with special concepts

Table 3-1 complete topology overview

 Star Ring Bus Tree Hypercube
Degree for central node = n-1

otherwise = 1
= 2 = n = 3 (for bi-directional) = dimension (x)

Diameter for central node d = 1
otherwise d = 2

d = n / 2 d = 1 d = 2 * log n d = log2 n
with n = 2x 2)

Subspaces 1) yes yes yes yes Yes
Publish groups 1) yes yes yes yes Yes
Cross communication 1) yes yes yes yes Yes
Uniquely identification 1) yes yes not warranted not warranted 3) not warranted 3)
Scalable 1) limited limited limited limited unlimited
Advantages

- easy to implement
- currently COMRIS
structure
- a small diameter

- good for medium
networks
-expansion is easy
- identification is
firmed
- degree is small
-

- a small diameter
- easy to initial
-

- usable for bigger
networks
- expansion is easy
- degree is small
-

- for unlimited
networks
- fault tolerant
- a small diameter and
degree, as well for big
networks
-

Disadvantages

- central node is the
bottleneck
- not unlimited scalable
- a high degree
-

- delay longer for big
networks
- one node can block
the whole ring
- a high diameter

- for a virtual structure,
difficult to implement
-need multicast (on the
bus) for peer-to-peer
communication
- a high degree

- it needs a special
routing algorithm and
names concept
- the bottleneck is near
the root
-

- it needs a special
concept to expand the
dimension
-

 33

3.2 Centralized vs. decentralized architectures

The debate between centralized versus decentralized (also called

distributed) architectures for multi-user applications is an old one. The two

primary issues are performance and consistency. Decentralized

architectures have been lauded for good performance. They require less

network bandwidth since only input or state-changing information must be

transmitted between nodes. Decentralized architectures also provide good

feedback to the agents since locally initiated input is handled locally. There

is no wait for the input to be processed by a central node and then

transmitted out to the agents. In comparison, centralized architectures

appear better at maintaining consistency among the other nodes. The

central portion of the system sequences the various inputs from the other

nodes (or agents) and ensures that every client sees the same changes at the

same time [9].

Rendezvous is a good example of a centralized approach to building multi-

user systems [11] [12]. Rendezvous relies on a central abstraction

connected via bundles of constraints, or links, to multiple views. This is

called the abstraction-link-view paradigm (ALV) [13]. In Rendezvous, the

abstraction and the views all run as lightweight processes within the same

heavyweight operating system process. Every user has access to a virtual

terminal. From this terminal thy have access to a program called the

Rendezvous Access Point (RAP), which is their entry into Rendezvous and

allow them to use multi-user applications or to make user-user

communication. Assume that there are n users in a conference. If every

user provides some sort of non-conflicting input (such as scrolling a

window or clicking the mouse at the virtual terminal), then O(n²) messages

are sent through the network. Any single message requires one

transmission to the abstraction and n-1 transmissions from the central

abstraction to the other views. For each user of n users to send a message

(n messages), this becomes n*(n-1) = O(n²).

 34

The price in network usage, though, is not without merit. Rendezvous

provides a reliably consistent view to each user. In fact, the communication

mechanism worked so well that some applications relied on the reliable,

sequenced broadcast of state changes even for updating the interface of the

user who made the change [14]. This proved to be a simple and elegant

way to write applications.

The Rendezvous abstractions and views described above actually ran

within one process on a single processor. Assume that a distributed

constraint system was implemented (as described in [12]) and that views

ran on the users machines and not on the machine running the abstraction.

Network traffic is still O(n²) as described above. However, if this system is

then implemented on a network providing reliable, sequenced multicasting,

the network usage is vastly improved O(n) = 2*n. Any single message

from a client would be sent over a reliable connection to the central

abstraction and is then multicast to every other client, resulting in two

network transmissions. For n clients, this becomes 2*n, or O(n). However,

the overall message latency is high because the abstraction is still

processing every message.

In contrast, MMConf is a good example of the replicated approach to

multi-user applications [15]. Although its performance is good (O(n)

network messaging traffic in theory but no centralized bottleneck to add

latency), in practice, applications built on top of MMConf quite often lost

synchronization. In addition, applications were arbitrarily limited in their

functionality. For example, MMConf explicitly used rigid floor control and

token passing to avoid some of the synchronization problems. This meant

that some users would have to wait to interact with the application or

would not be allowed to interact with it at all. Besides user dissatisfaction,

this floor control policy was a complicated piece of code that relied on

unique tokens and sequence numbers to work properly--it often did not. As

 35

another example, certain user-oriented features such as continuous

scrolling were disabled, again to alleviate some synchronization problems.

As a result, application programs presented unnatural interfaces to users or

were less powerful than their single-user counterparts. Much of this is due

to the fact that MMConf was not implemented with true, reliable multicast-

-instead it was implemented as best as possible on top of TCP/IP.

The COMRIS infrastructure has three key conditions: communication

(from each agent to each agent), identification and subspaces / publish

groups. With a centralized architecture is this reachable. One problem of

this architecture is that it is not endlessly scalable. There is a point on

which the central node has to manage too much and the latency increases

rapidly. A decentralized architecture has not this trouble, but in the

COMRIS case another key problem exists. The identification and

subspaces have to be unique and this is difficult to manage in a totally

decentralized system, like at the MMConf project. A solution is a mixed

architecture. For example, the Internet is such an architecture. Each

Internet address is unique and it is possible to communicate with other

members on the world wide web. Section 3.1 describes different

architectures and each node means an independent kernel. If each kernel is

connected to an amount of secretaries (and secretary pools), then it is

possible to speak about a centralized system, because from a more abstract

Figure 3-10 Centralized vs. decentralized architectures

 36

point of view all kernels are together like one central node. However, what

happens if the nodes are replaced by kernels and secretaries (or better

secretary pools)? This is a mixed architecture, with some central parts (the

kernels) but altogether it is decentralized.

3.3 Direct connections

Up to now, we have spoken about the distribution of traffic. All these

structures are useful and needed for huge systems (with thousands or

perhaps millions of agents). Another network structure, which was not

explained, is a fully connected network. In such a network, each node is

connected with each other node. This system has a diameter of one, but a

degree of n (n equals number of nodes). Such a system is only workable for

small networks and it is not very scalable. A variant of a fully connected

network is a limited connected network. This means only a finite number

of direct connections are possible. For example, if we say a secretary pool

can have ten direct connections, than it is necessary that the secretary pool

after ten connections closes the oldest one, to open a new direct

connection.

Figure 3-11 Example for a direct connection

 37

Using direct connections, it is possible to bypass a lot of traffic around the

kernel. The direct connections are an important part of the COMRIS

infrastructure. Section 4.6 shows the influence to scalability. Through the

exoneration of the kernel, the infrastructure is much more scalable (at 3

times). In addition, the direct connections are the first step to a

decentralized architecture. The kernel takes over just the identification task

and the management of the subspaces / publish groups, and the forwarding

of messages in these areas.

3.4 Use subspace for address transport

The original version of the COMRIS infrastructure for subspaces used a

simple method to send the name of each new member. Only the name was

transmitted, with a single message to each member of this subspace (called

unicast), and saved in the entity-list of the secretaries.

This method guaranteed that each member of the subspace got the

information about a new agent. However, this is also a problem, it

generates many messages, which have to be transferred over the

infrastructure. For example, if there are 10 agents and they join one after

one in the same subspace, it creates 45 messages (1+2+3+..+9) to tell the

existing members of the subspace “There is a new agent”. For 100 agents

in a subspace it creates 4950 messages and this makes the whole

infrastructure very busy.

()12
1

−+⋅−
naa

n

Each member of the subspace should get the information about a new

member and therefore it is possible to use a multicast (see 2.3) for the

transition. Now it creates only one message per entry and this unburdens

i.e. with: n=100, a=1 ,an-1=99
 msg=4950

 38

the infrastructure. In contrast to unicast the multicast is not reliable, but the

probability is very high that an agent will gets this information (about the

new agent) over another way (another subspace or direct communication).

Another key problem of the original method is, there is not enough

information to create a direct connection (see section 3.3), which needs an

address with a port number. Without this information, the secretary has to

ask the kernel all the time for the address, or the kernel to forward the

message. To avoid this situation it is better to multicast the name, the

address and the port of a joining agent (as presented in Figure 3-12).

Obviously, it makes the entry message bigger, but it removes the kernel

load. This is an important feature for the infrastructure. The subspace is

usually used as an exchange platform for names from other agents with

similar interests. It helps to decrease the kernel load and therefore the

kernel is less busy for an important job. Section 4.6.3 compares the

difference between both variants.

3.5 Special name concept

There are different ways to enhance the scalability of a system like

COMRIS. One way is to increase the capacity of the network structure, to

handle all the traffic over the network. Another way is it to reduce this

traffic. Such a way is to give each agent name a special extension, to

subspace

agent A

agent B

agent C

agent D

agent ABC

msg: ABC

msg: ABC

msg: ABC

msg: ABC

join in
subspcae

subspace

agent A

agent B

agent C

agent D

agent ABC

multicast
msg: ABC, address, port

join in
subspcae

Figure 3-12 unicast vs. multicast entry message

 39

recognise the source of this agent. For example, in the COMRIS project

each agent can talk with each other agent, but the secretaries do not know

where in the network the receiver agent is. Of course, in the current project

each agent has an entity, which should include the name, the address and

the port. Nevertheless, sometimes this information is unknown and they

need a lot of memory. That sometimes only a name is known is conditional

on agent intelligence or through external input (from the real world). The

only thing which is always available is the name of the agent.

The idea of this special name concept is an extension of the agent name.

For example, if agent ABC is a member of secretary pool 1, and then this

agent gets the extension 1 (ABC#1). If the agent moves to another

secretary pool, i.e. to secretary pool 2 the new extension is 2 (ABC#2). In

case that this agent is a personal agent (directly connected to a real person),

the extension is 0 (ABC#0). Normally, there is a direct connection between

the secretary pools (see section 3.3), but this connection has the name of

the creator agent (conditional on the programming of COMRIS). The

problem is, if an agent (ABC) from the same secretary pool tries to make a

connection to an agent from the other secretary pool, the infrastructure

does not know that an older connection (to DEF) exists. The secretary pool

1 sends the message to the kernel and this forwards the message to

secretary pool 2, which submits the message to the mailbox of agent DEF.

With this extension it is possible to save the connection under the universal

secretary pool name, instead of the agent name. Now it is possible for the

infrastructure to recognize that an agent is trying to make a link to a

secretary pool, which already exists. The main benefit can be achieved for

agents in secretary pools, because they are the majority in the infrastructure

and they create the primary traffic between secretary pools.

 40

To get the full effect for the COMRIS infrastructure it is necessary that this

extension is always bonded with the agent name. Unfortunately, at this

moment it is not longer completely realizable. The COMRIS project is to

advance to expect of the other COMRIS partner that they implement this

concept now. The current version of the infrastructure is using this concept,

but the extension to the outside world is hidden. That makes it not so

effective (see section 4.6.4). Nevertheless, this concept was very useful for

the visualization module of the COMRIS infrastructure It is now possible

to associate an agent to a secretary or secretary pool [10].

Kernel

SP1

Agent

Agent

Agent

Agent

Agent

SP2

existing direct connection

with extension

without extensionABC#1

DEF#2

Figure 3-13 expample for a message path

 41

C h a p t e r 4

4 Implementation, Integration and Tests

4.1 Description of existing COMRIS infrastructure

 After three years of development the main part of the COMRIS

infrastructure was already implemented and working at the beginning of

this work. The infrastructure of COMRIS is written in JAVA and each

kernel, secretary and secretary pool is running in its own java virtual

machine.

The communication infrastructure enfolds 65 class-files with over 500

methods. Due to the fact that the infrastructure was originally written in C

and then transformed to JAVA, the object oriented approach of JAVA is

not complete. This makes changes at the source code more complicated or

requires implementations two or three times. At the beginning of this work,

the COMRIS infrastructure was basically done, but only the kernel was

used for communications between the secretaries. For the following

implementations it was partly necessary to make some changes to the flow

diagram. Especially the send and receive message needed a partial

redesign.

The general functioning of the communication infrastructure is described

in Figure 4-1. It should show the event trace for different activities. The

first step, after the initiation, is the registration of the secretaries and

secretary pools and, of course, of the agents. Then it is possible to register

the subspaces and publish groups, in which the agents can join and start to

exchange information. If an agent finds other agents with similar interests,

the direct communications are started. After the information exchange, it is

necessary to send a message to the real world and to give the status of the

information exchange to the conference member.

 42

The message format is XML, which implies an XML parser is needed to

translate the message and to figure out the next action according to this

message. With this proper format, it is also possible to have an interface to

other agent systems and to exchange information with them (provided in

later versions). For example, the Visualisation Tool is using parts of the

basic secretary method and sends and receives messages (which are based

on XML) to get the status information about the infrastructure [10]. Due to

the fact that the Visualisation Tool is like a secretary, but with another

assigned task, it was necessary to implement some service routines for this

tool. The additional methods replay the request for information of the

visualisation tool.

kernel
Secretary

Pool 1
Secretary

Pool 2
Secretary... ...

register SP1

accept

register
agent ABC

accept

register SP2

accept

register SP1

accept

register agent A

accept A
register agent B

accept B
:
:

:
:

register agent N

accept N

register agent N

exception,
agent N exist

join in subspace
with A

new member join in subspace
with B

new membernew member

send B msg from A

send address forward msg

send B msg from A

answer A

send ABC msg from A

:
:

:
:

:
:

register SPs

register an
agent

register agents with
the same name

join in a subspace

send messages
between agents

send success
message to real

world

Figure 4-1 Event trace of the COMRIS infrastructure

 43

4.2 Implementation of direct connection

The first thing that was implemented was the direct connection. For this

purpose the direct connection method was integrated in the send method.

Now, when an agent sends a message to another agent, the send method

tries to make a direct connection. Figure 4-2 shows a message flow

diagram. The success of the direct connection is shown later on in this

chapter.

Message

use send method
send(destination, message)

is it local? process message

try direct
connection

exists connection
with this name?

send message
is destination in

entity-list?
try direct

connection

ask kernel fo
address

kernel should
forward message

forward
successful?

send success
message

send error
message

yes

no

yes

no

yes possible

no

not possible

not possible

yes

no

Figure 4-2 Message flow diagram for direct connetion

 44

4.3 Implementation of address multicast

The second implementation was the address multicast. The working

principle is quit simple, as seen in Figure 4-3. If an agent joins in a

subspace it is important, for the existing agents in this subspace to know

not only the name but also the address and the port of the new agent.

Obviously, this makes the multicast message bigger and takes more

memory at the entity-list, but the multicast is much faster than a unicast

message to each subspace member. It makes the direct connection easier

join in Subspace
Request

use joinSubspace method
joinSubspace(agentname, subspaeID)

send kernel "join Subspace
message"

send
successful?

send success
message

send error
message

not
possible

yes

no

add member to
subspace list

send multicast
McastSend(Subspace,
name, address, port)

send unicast
Send(Subspace, name,

address, port)
possible

try multicast
message

Figure 4-3 Flow diagram for address multicast

 45

and reduces the traffic over the kernel, because now it is no longer

necessary to ask the kernel for the address of the destination agent.

4.4 Implementation of special name concept

Another update was the special name concept. This function can be

implemented in different ways. One possibility is to enhance the agent

name with an extension, which is represents the secretary or the secretary

pool. For example, instead the name ABC is the new name ABC#0. The

extension number uses the number of the secretary pool (which is always

starting with 1) and an agent from a secretary has the number 0. With this

model (as presented in Figure 4-4), all personal agents in a secretary have

zero, but it does not matter, because these agents do not produce so much

traffic and they are in the minority.

The old model: If an agent tries to send a message, the direct connection

method has to compare the name of the destination and the existing

connection. If such a connection is not available, the method has to search

for a connection with the same address and port number. The problem is, if

the address and the port number are unknown by the agents. In this case,

the message has to be sent to the kernel and forwarded to the destination.

ABC#0

DEF#0

secretary

secretary

Kernel

secretary
pool 1

secretary
pool 2

a#1

b#1

c#2

d#2

Figure 4-4 each agent has an extension

 46

The new model: Now, if an agent tries to send a message, the direct

connection method looks for the extension and compares just this

extension with existing connections to other secretary pools. This should

reduce the comparisons and the requests at the kernel.

Unfortunately this model is not applicable now, because the COMRIS

project is at its end and this model needs changes not only at the

infrastructure level. Another possibility to implement this concept is to

expand the data set entry. The name, the address and the port number of an

agent is saved in the dataset entry. A new entry is the extension number.

The difference to the upper model is, this entry is saved by the secretary

and is not visible to the outside (as presented in Figure 4-5).

ABC

DEF

secretary
ABC, add, port, 0

secretary
DEF, add, port, 0

Kernel

secretary pool 1
Enity-list:

a, add, port, 1
b, add, port, 1

secretary pool 2
Enity-list:

c, add, port, 2
d, add, port, 2

a

b

c

d

Figure 4-5 the extension is saved at the secretary

 47

4.5 Description of Controlled Experiments

The Infrastructure layer provides the COMRIS agents with many different

communication protocols. However, much of the functionality is hidden to

provide simplicity of use. To initiate communications, the agents only need

to talk to their dedicated Secretary, which contains an interface into the

Infrastructure. The Secretaries and the rest of the Infrastructure, i.e. the

central Kernel, can then deal with the mechanism of sending or receiving

messages. It is clear therefore that the underlying speed, reliability and

scalability of the Infrastructure are vital to the upper layers of the project.

The following experiments aim to test the characteristics of the Java

Infrastructure with different versions. The most important factors are

scalability, i.e. the relationship between the size of the Infrastructure and its

performance, and reliability. The scalability can be broken down into the

following key areas for experimentation:

- number of registrations

- determine outcome of direct connection

- determine outcome of address multicast

- determine outcome of special name concept

The size of the Infrastructure layer is limited by the

performance/capabilities of the machine(s) that it resides on. There is, of

course, a limit to the amount of hardware that can be dedicated to this task

so realistic numbers of registered agents running on a single machine are

required. Currently the Kernel acts as a central name server and resides on

a single machine. As the Infrastructure grows the load on the machine

running the Kernel will also grow. Measuring the performance of different

machines, whilst running a Kernel through a large registration session,

should give a quantified answer to how the above constraint will restrict

 48

the Infrastructures performance, and how many agents can successfully

register in a set period of time.

The size of the Infrastructure also affects the frequency of message sending

as there are more entities wishing to send messages. A critical point or

bottleneck for the message sending will occur at the registration phase,

numerous agents wishing to register with the Kernel at once. Another

critical time is when agents join a subspace.

When dealing with the message sending itself there are two main variables;

the size of the messages and the frequency at which they are being sent.

Both of which affect the message delay. Whether the messages are coming

from one sender or from many senders, from the viewpoint of the receiving

Secretary the only difference is the frequency of the incoming messages.

This is because each communication socket has an independently threaded

Connection class, which calls the Secretary when it has received a

message. For these tests the role of the COMRIS agent has been replaced

by a test agent to replicate all the typical functions of an agent.

To prove that one solution makes the system more scalable than the other

solution, it is necessary to simulate a realistic behaviour. The only way to

do this, is to use random factors, which means that the whole test is based

on random parameters. Of course, there are some static conditions like

number of agents or number of sent out messages, but settings like which

agent is in which secretary pool or which agent is doing a peer-to-peer

connection are random. With random variables it is essential to repeat the

tests more than one time. With enough repetitions it is possible to get a

good average of testing results.

The tests were ran on equivalent machines with 128Mbyte RAM,

500 MHz processor and 100 MBit Network card on a network with the

same speed. On the machines was installed Windows 2000 and Java 1.2.2.

 49

The following test pattern was used to compare the different COMRIS

versions.

Start Kernel
Start Secretary Pool 1 to xxx
for SP1 to SPxxx
 create yyy Agents
 save time (start time)

for SP1 only
 create Subspace 1 to www

for SP1 to SPxxx
 for Subspace 1 to www
 create random number R1
 for R1
 select random agent R2
 join with R2 in Subspace
 save time (time to join in a subspace)

 for zzz number of messages
 select random agent A1 (from own SP)
 select random agent A2 form entity-list
 send message from A1 to A2
 save time (time to send zzz messages)

this are the variable parameters:
www – number of subspaces
xxx – number of secretary pools
yyy – number of agents per secretary pool
zzz – number of messages

All tests were repeated five times, to get a rough average. In summery, the

tests have resulted in thousands of measured values (ca. 25000 results).

Each test needed synchronisation between the secretary pools and the

kernel, because it was important that each test was started and stopped at

the same time. Furthermore, each test needed a long execution time (more

than 36h), due to the different parameters and recurrences. With the

identical hardware and a fast network it is possible to disregard the

 50

influence of the physical network and hardware. Performance tests with

low speed machines (166 MHz) increased the time per measuring by a

factor of four, but the general difference between the different

infrastructures versions was the same as before.

4.6 Results of Experiments

4.6.1 Registration Performance

An earlier test was trying to show the registration time for several agents.

The test in this document could confirm these results. Figure 4-6 shows the

time taken for up to fifty thousand registrations from one Secretary Pool to

the Kernel. Both the Kernel and Secretary Pool are running on the same

machine (Windows 2000). As the number of registrations increases so the

processing of these requests slows down, this is quantified in Figure 4-7.

In the results the registrations take increasingly longer time beyond one

thousand registrations. As long as registration is reliable when overworked

Secretary Pool Registration Performance

0

100

200

300

400

500

600

700

0 5000 10000 15000 20000 25000

Number of Registrations

T
im

e
in

 s
ec

Figure 4-6 Secretary Pool registration
times

Secretary Pool Registration Performance

0

50

100

150

200

250

300

0 5000 10000 15000 20000 25000

Number of Registrations

R
eg

is
tr

at
io

ns
 p

er
 S

ec
on

d

Figure 4-7 Number of registrations per
second

 51

which the results prove as no registrations failed, then such behaviour is

acceptable. A perfectly scalable system would produce a horizontal line.

4.6.2 Test direct connections

To prove that direct connection can disburden the kernel, it was necessary

to test an infrastructure version with and without implemented direct

connections.

Figure 4-8 shows the time to send 100 to 20000 messages between 30 to

3000 agents, using direct connections. In comparison with Figure 4-9,

which is using the old COMRIS version without direct connections, it

needs 2 ½ less time to send 20000 messages between 3000 agents. In the

Figures it is good to see the influence of the number of messages. A small

amount of traffic does not need so much capacity from the kernel and so

there is no big difference between both versions. In contrast, a high level of

traffic needs too much capacity from the kernel and it is not able to forward

all messages fast enough.

30
300

1500
3000

100

1000

5000

10000

20000

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

800,0

900,0

time in sec

agents

messages

Figure 4-8 using direct connections

30
300

1500
3000

100

1000

5000

10000

20000

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

800,0

900,0

time in sec

agents

messages

Figure 4-9 no direct connections

 52

4.6.3 Test address multicast

The implementation of the address multicast was not so complicated, but

the influence to the efficiency and scalability is very high. Figure 4-10

shows the curves of an infrastructure version with and without address

multicast over the subspaces.

It is easy to see that the old version increases faster than the new version

and the time to send the multicast message is less than a 1/3 of sending

unicast messages to each subspace member.

4.6.4 Test special name concept

The special name concept should reduce the check-ups to find existing

direct connections between secretary pools. Figure 4-11 to Figure 4-14

shows the influence of this concept for three and for five secretary pools.

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

0 500 1000 1500 2000 2500 3000 3500

agents

tim
e

in
 s

ec

using address multicast without address multicast

Figure 4-10 influence of address multicast

 53

The influence of using the name concept in Figure 4-13 is higher than in

Figure 4-11. The reason for this behaviour lies in the number of secretary

pools. More secretary pools mean more connections between them and this

improves the search effects of this concept.

The efficiency of this concept is not as high as the direct connections. One

reason is that this is not the ideal implementation (the version which is

using the name for the secretary pool number), but also that this concept

needs more memory to save the additional information.

3 0
3 0 0

1 5 0 0
3 0 0 01 0 0

5 0 0 0

2 0 0 0 0

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

time in sec

agen ts

messages

Figure 4-11 using name concept with 3 SPs

3 0
3 0 0

1 5 0 0
3 0 0 01 0 0

5 0 0 0

2 0 0 0 0

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

time in sec

agen ts

messages

Figure 4-12 no name concept with 3 SPs

50 500 2500
5000

100

5000

20000

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

time in sec

agents

messages

Figure 4-13 using name concept with 5 SPs

50 500 2500
5000

100

5000

20000

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

time in sec

agents

messages

Figure 4-14 no name concept with 5 SPs

 54

4.6.5 Test number of applications per machine

Another interesting question was the influence of the java virtual machine

(JVM) to the performance. Is it useful to start more than one secretary pool

on the same machine, only to separate different interest groups or similar

things? The answer is, no. Each secretary pool has its own JVM and using

more than one secretary pool takes more memory and processing time

from the machine. A solution is to allow to more than one secretary pool

with the same JVM (it is to implement in the source code of the secretary

pool). However, why should it be useful? For example, two secretary pools

need two separate entity-lists, more memory and more processor time than

one pool with the same number of agents. Figure 4-15 and Figure 4-16

show the difference between one and two secretary pools on a machine

with the same number of agents.

4.6.6 Summery tests

A number of observations and interpretations can be made from these

graphs. Registration of small amounts of agents is fast. Scaling up to a

larger number of agents and also messages shows drastic increase in time.

Also the different kind of improvements make the communication

30
300 1500

3000
100

5000

20000

0,0

100,0

200,0

300,0

400,0

500,0

600,0

time in sec

agents

messages

Figure 4-15 running 1 SP per machines

30
300 1500 3000

100

5000

20000

0,0

100,0

200,0

300,0

400,0

500,0

600,0

time in sec

agents

messages

Figure 4-16 running 2 SPs per machines

 55

infrastructure more scalable and let the star network work well until there

are more then 5000 agents (which is enough for a conference with 1000

members).

The key question after all improvements is always: “Was it useful?”.

Figure 4-17 and Figure 4-18 shows the difference between the original and

the last updated COMRIS version. It is clear to see the new version is 2 ½

faster than the original. Noticeable is that the trend is obviously lower,

which means that the load does not increase so fast.

The kernel requires enough memory to keep a direct connection to every

secretary in the infrastructure. Whilst the infrastructure represents a

centralised model this is an important consideration, even though the

secretaries are fairly independent of the kernel once direct connections are

established. If such connection fails or if secretaries are allowed a

maximum number of direct connections to free up their machine’s

resources, then the kernel will still be required. Maybe the connection to

the kernel could be an intermittent one, turned off when not required,

freeing up the kernel’s resources.

30
300

1500
3000

100

1000

5000

10000

20000

0,0

200,0

400,0

600,0

800,0

1000,0

1200,0

1400,0

time in sec

agents

messages

Figure 4-17 original COMRIS version

30
300

1500
3000

100

1000

5000

10000

20000

0,0

200,0

400,0

600,0

800,0

1000,0

1200,0

1400,0

time in sec

agents

messages

Figure 4-18 COMRIS version with all updates

 56

The charts do not show a nice linear or exponential curve. This is caused

by two main factors. First, the fact that the curve is a result of more than

one (kernel and secretary pools) separated java virtual machine (JVM)

processes on top of Windows NT, which is not a real-time system and has

to divide and schedule its resources with other applications. In addition, the

JVM can garbage collection calls enter into a memory during execution of

the test. Second, and more important, is the fact that the implementations

are thread based. This means that in some cases a large number of threads

(the application itself, direct connection, etc.) can have to perform a lot of

pre processing but are only able to produce their output result at the next

activation cycle.

 57

C h a p t e r 5

5 Conclusion

5.1 Achieved status

The biggest problem on this work was the time, due to the knowledge that

the COMRIS project is near the end it is difficult to make elementary

changes. Nevertheless, appropriate work was done and the scalability of

the COMRIS communication infrastructure was increased.

The address multicast is noticeable right at the start of the infrastructure,

thereby the whole registration process in the subspaces and publish groups

is faster (see 4.6.3). The direct connections are perceivable, especially in

the running system, because the messages find the specified destination

without any detours. The third implemented idea, the special name concept

is only useful for bigger infrastructures with many secretary pools and due

to the shortened implementation, not so effective. The kernel itself is now

able to handle a significantly higher load than at the beginning of this

work. Therewith the whole system is able to handle higher load and the

message delay time is reduced.

Altogether, the scalability of the communication infrastructure was

increased by a factor of two and a half to three. There were also some

methods implemented, which are necessary for the visualisation tool [10].

The test process discovered some errors at the programming of the

infrastructure (some functions were used twice), which were removed

immediately.

 58

5.2 Commendation

Over time, it showed that some ideas are useful and some are not so useful

for such an agent system. Therefore, it is adverse to use bus or tree

topologies. They have a potential bottleneck and they have some

implementation problems. At the end it always depends on the size of the

agent system. For example, a small conference with 100 – 1000 members

is not a problem for the star topology, especially not with some additional

concepts like the direct connection and the address multicast. Should it be a

bigger conference, it is necessary to have a more flexible infrastructure. In

the star network the central node is always the bottleneck and, in addition,

direct connections are not endlessly useful. Each direct connection takes

the same memory and it needs time to search an existing direct connection.

Thus it is better to use a more decentralized architecture, like the ring or the

hypercube.

The work on the infrastructure has shown that it is easy to say “we enhance

the scalability”, but it is difficult to realise this aim. How scalable an

infrastructure can be is decided in the design and with the specification. It

is always difficult to implement changes in a sophisticated stadium.

Another important conclusion is that not only the look of the infrastructure

can enhance the scalability. This means that the complete system has to be

well balanced. In addition to the infrastructure it is also important that, for

example, the agents use techniques to reduce the traffic. So it is perhaps

possible to implement message-filter algorithms to make the O(n²)

transport problem to a O(n) transport problem.

 59

5.3 Perspective

With the end of this work, the COMRIS project has already finished. Thus

there is no further work to do in direct connectivity to COMRIS. However,

there are some ideas that can be prosecuted in additional studies. This

document tries to show the different design possibilities for the COMRIS

infrastructure. Further work could try to test the different topologies and to

prove that a hypercube is more scalable than a star or a ring.

Another concept, which was not described in this work, is load balancing

for distributed architecture [16]. Load balancing collects system state

information and assigns or redistributes the application tasks among the

processors of a parallel computing system in order to maximise overall

throughput and stabilise response times. However, it could be used also to

assigns the traffic of a communication infrastructure like COMRIS. This

can be performed either by a central component supervising the entire

system, by cooperating pre-processor load balancing agents or by

cooperation of load balancing agents, each of them controlling a part of the

processing system.

It is also imaginable that the traffic through the infrastructure is finding its

way with a special routing strategy. For example, if a connection between

two secretary pools overloaded, it needs more time for sending a message

between two agents in this pools. A special algorithm could analyse the

traffic and could bypass new messages over another path. This path maybe

longer, but free and thus the message can reach the destination earlier.

 60

BIBLIOGRAPHY

[1] “Computer Networks: A system approach”, Larry L. Peterson &
Bruce S. Davie; 600 pages 2nd Ed (1 November, 1999) Morgan
Kaufmann, ISBN: 1558605770

[2] “COMRIS: Virtual space definition and implementation plan”,

unpublished internal document

[3] Starlab (Belgium) checked 21.03.2001
 http://comris.starlab.org/

[4] Webopedia checked 21.03.2001

http://webopedia.internet.com/TERM/s/scalable.html

[5] Computational Science Education Project;

http://csep1.phy.ornl.gov/csep.html checked 21.03.2001

[6] “Reliable broadcast in hypercube computers”, P. Ramanathan

and K. G. Shin; IEEE Trans. Comput., vol. C-37, no. 12, pp.
1654–1656, Dec. 1988.

[7] “Optimum broadcasting and personalized communications in

hypercubes”, S. L. Johnson and C. T. Ho; IEEE Trans. Comput.,
vol. C-38, no. 9, pp. 1249–1268, Sept. 1989.

[8] “RING: A Client-Server System for Multi-User Virtual

Environments”, Thomas A. Funkhouser; Proceedings of the
1995 symposium on Interactive 3D graphics, 1995, Page 85

[9] “High Performance Infrastructure for Visually-intensive CSCW

Applications”, Stephen Zabele, Steven L. Rohall and Ralph L.
Vinciguerra; Proceedings of the conference on Computer
supported cooperative work, 1994, Pages 395 - 403

[10] “Virtual Reality Visualization of a Communication

Infrastructure and Large Scale Agent Interaction”, Robin Wolff
unpublished Dissertation, Jan 2001

[11] “Rendezvous: An Architecture for Synchronous Multiuser

Applications”, John F. Patterson, Ralph D. Hill, Steven L.
Rohall and Scott W. Meeks; Proceedings of the conference on
Computer-supported cooperative work, 1990, Pages 317 - 328

 61

[12] “The Rendezvous Language Architecture”, Ralph D. Hill, Tom

Brinck, John F. Patterson, Steven L. Rohall and Wayne T.
Wilner; Commun. ACM 36, 1 (Jan. 1993), Pages 63 - 67

[13] “The Abstraction-link View Paradigm, Using Constraints to

Connect User Interfaces to Applications”, Ralph D. Hill;
Conference proceedings on Human factors in computing
systems, 1992, Pages 335 - 342

[14] “A Collaborative Medium for the Support of Conversational

Props”, Tom Brinck and Louis M. Gomez; Conference
proceedings on Computer-supported cooperative work, 1992,
Pages 171 - 178

[15] “MMConfi An Infrastructure For Building Multimedia

Applications”, Terrence Crowley, Paul Milazzo, Ellie Baker,
Harry Forsdick and Raymond Tomlinson; Proceedings of the
conference on Computer-supported cooperative work, 1990,
Pages 329 - 342

[16] “Scalability and Potential for Optimization in Dynamic Load

Balancing - Centralized and Distributed Structures”, Wolfgang
Becker; http://www.informatik.uni-stuttgart.de/cgi-
bin//makehtml-ncstrl.cgi?document=TR-1992-01
checked 21.03.2001

[17] “Distributed Peer-to-Peer Control for Harness”, Christian

Engelmann, unpublished Dissertation, Jan 2001

Declaration of authorship

I hereby declare that this submission is my own work and that, to the best

of my knowledge and belief, it contains no material previously published

or written by another person nor material which to a substantial extent has

been accepted for the award of any other degree or diploma of the

university, except where due acknowledgement has been made in the text.

Erklärung zur Urheberschaft

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig und nur

unter Verwendung der angegebenen Literatur bzw. Hilfsmittel ohne

fremde Hilfe angefertigt habe.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen

Prüfungsbehörde vorgelegt.

Reading (UK), den 27.März 2001

(Oliver Otto)

