Enhancement of the scalability of an
infrastructurefor support of alarge scale
virtual and agent environment

A Dissartation submitted in partid
fulfilment of the requirementsfor the
degree of

MASTER OF SCIENCE

in Pardld and Scientific
Computation

inthe
Faculty of Science
Universty of Reading

by
Oliver Otto
23. January 2001

Supervisors.

Dr. Dave Roberts Dipl.-Ing. Gaittfried Junghanns
University of Reading Fachhochschule fur Technik und

Great Britain Wirtschaft Berlin
Germany

ACKNOWLEDGMENTS

The work in this thess is a part of the COMRIS research project at the
Reading Universty. | would like to take this opportunity to thank dl those
who have contributed to the work. Firdly, I would like to express my
gratitude to my supervisor Dr. Dave Roberts for al his support, guidance,

congtructive criticism and idess.

Furthermore, | am grateful to Robin Wolff who was very helpful whenever
| needed advice and information about al sorts of practical questions.

In addition, | would like to thank lain Werry and Farshid Amirabdollahian
for reading through the whole dissartation and helping me with my
English.

Findly, | am grateful to my parents for their encouragement and support
over my whole study.

ABSTRACT

The dramatic improvements in globd interconnectivity due to intranets,
extrangts, and the Internet has led to an exploson in the number and
vaiety of new daaintendve gpplications. One of these gpplications are
virtud redity sysems with their virtud environments. Current research in
large-scde virtud environments can link hundreds of people and atificid
agents with interactive three-dimensond (3D) graphics massve terran
databases, globa hypermedia and scientific datasets. One of these research
projects is the Co-Habited Mixed Redity Information Spaces (COMRIS).
A vaiety of neiwork eements is required to scde up this virtud
environment to an abitraily large d9ze and sSmultaneoudy connecting
thousands of interacting agents. The god of this work is to show which
dements can be used to enhance the scdability of the communication
infradtructure. It is showing a generic overview of different desgn
possbilities like the ring or the hypercube topology.

TABLE OF CONTENTS

LISt Of FIQUIES. ... oottt st et e e ne e i
ADDIEVIELIONS ..ottt benne s iV
([0 1S S S %
L0087 1 o o OSSP 1

1.1 OVEIVIEIW ..ottt st bbbttt snennenne s 1

1.2 Conceptual formulation.............ccveeeeieereeie e 3
1.3 Organization of thiSthesIS.........ccceccevieiecee e 5
Problems of network scalability...........cccooveeveeiiniene e 6

2.1 What iS SCAlaDility?......ccccovririeieeseseeee e 6
2.2 Conditions for a large scale virtual and agent environment 6
2.2.1 General ArChiteCIUNe.......ccvveeeeieierie et 6

AV U 05 0 o =< SRS 8

2.2.3 PUBliSh groUPSocveeece e 8

2.2.4 Communication across the iNfrastructure............ccoeevevevenereenne. 8

2.2.5 Communication related requiremMents.........cccoeeveeeeeveeseeseesneenns 9

2.2.6 Agent specific related requirements...........cccceveeveevesceeseecee e, 9

2.3 Why do we need network scalability?ccccoveeeveevecceceereee e 10
Possibilities to enhance the scalabilityccooovvveeiieecececice e, 16
3.1 Different Network SEIUCTUIE.coveieeiriere s 17
3.1.1 Star topology, the current COMRIS topology........ccceeeeeeruennee. 17

3.1.2 Ring topology, expandable asthe star...........ccccceveeveeieceecnenee. 19

3.1.3 Bus topology, an impractical topologycccceveeveeieeieenreenne. 23

3.1.4 Tree topology, not recommendable for COMRIS...................... 25

3.1.5 Hypercube topology, high debatable.............ccccoovvvevveivieenenee. 27

3.1.6 SUMMary tOPOIOQIES.........cceerreeierieesreeie e e 31

3.2 Centralized vs. decentralized architeCturesocceeeeveeieieneniesiennens 33
3.3 DIir€Ct CONNECHIONSc.veveiieiieieeiieee et nneas 36
3.4 Use subspace for address trangportc.eceeveeceeveevieeseceese e 37
3.5 Specia NAME CONCEPLoceeeeeeiecee et 38

4 Implementation, Integration and TESES.........ccceeererieereerieseeseee e seeeeens 41
4.1 Descriptionof existing COMRIS infrastructure............ccceeeveerieenenne. 41
4.2 Implementation of direct CONNECLION..........ccceeveveeieereereee e 43
4.3 Implementation of address MUItiCastccceecvevierieveere e 44
4.4 Implementation of special name CoNCEPL.........cevvrvereerenieeseereeeeen 45
4.5 Description of Controlled EXperiments..........cccevveeeveevesieeseeseeseenn 47
4.6 Results Of EXPEiMENES........cccveeerece e 50

4.6.1 Registration Performancec.cecceveereecesieesesieseese e 50
4.6.2 Test direCt CONNECLIONSooveverieriesiesiesiesieeee e e 51
4.6.3 Test addreSS MUITICESEc.ceverierieriesie e 52
4.6.4 Test special NAME CONCEPLcevveeeereeereeeeeeeesee e e see e 52
4.6.5 Test number of applications per machine..........ccccceevevveceeneeenee. 54
4.6.6 SUMIMENY TESES ...oiiiiiiieciie ettt sreennee e 54

5 CONCIUSION......oiuiiiiiiiierie sttt nee s 57
5.1 ACNIEVED SEAUS......ovieiieriesiesieeieeee s nneas 57
A = £ 0= o 1Y 59

2] o] 00 r="o] V2P 60

LIST OF FIGURES

Number Page
Figure 1-1 COMRIS OVEIVIEWceeiueriiriieieieiesee et 2
Figure 1-2 The Virtal world of COMRIS..........cccooeiieiiiierece e, 3
Figure 2-1 COMRIS INfrastrUCtUre...........cooeeiieiiieecie e 7
Figure 2-2 Secretary communication within the infrastructure........................ 7
Figure 2-3 Direct links: @) point-to-point; b) multiple access............ccceueneee 10
Figure 2-4 Correspondence between OS| and IP protocol layer moddl......... 11
Figure 2-5 Switched NEtWOIK...........coiriiiiiee s 12
Figure 2-6 Interconnections Of NEtWOIKScovverenenenieeese e 14
Figure 3-1 two user try to login with the samename...........ccccoveeeveecieennnne 16
Figure 3-2 peer-to-peer communications between agents..........ccocceeveeenenne 17
Figure 3-3 Example for astar topologycccoerererenenenieieeneesee e 18
Figure 3-4 Example for aring topologyccceveeiereereeie e 20
Figure 3-5 Example for abustopology........ccccceevveiieiieeiie e 23
Figure 3-6 Example for atree topologycccoerererenenenieeeesese e 25
Figure 3-7 consecutive numMbering of atree.........ccccvveeveececeese e 26
Figure 3-8 Exapmle for a hypercube topology........cccoeceevievieeiieccieccie e 28
Figure 3-9 A 3-dimesional hypercube............ccoeriienineneeeeee e 28
Figure 3-10 Centralized vs. decentralized architectures...........cccoevvrereenne. 35
Figure 3-11 Example for adirect ConNection.............ccceveeceeeeeiecieseesieenns 36
Figure 3-12 unicast vs. multicast entry MeSSagecoccveeveeviieeseecieesieeeeeens 38
Figure 3-13 expample for amessage path...........cocoevereneeeienene e 40
Figure 4-1 Event trace of the COMRIS infrastructureccccoveevveeviennnnne 42
Figure 4-2 Message flow diagram for direct connetion............cccceeceeveevnene 43
Figure 4-3 Flow diagram for address multiCast...........ccoceveeeeeieenenenesicniee 44
Figure 4-4 each agent has an eXtENSION..........ccceveeieveere e 45
Figure 4-5 the extension is saved at the secretarycccoceevceeveeccieecee s, 46
Figure 4-6 Secretary Pool registration times............ccoceveveeceeienencsescneee 50
Figure 4-7 Number of registrations per SECoNdcoceverereereenieneseseseennes 50
Figure 4-8 using direCt CONNECLIONSc.cceveeeerieeie et eee e s 51
Figure 4-9 no direCt CONNECLIONS.........cccveeieeiie e 51
Figure 4-10 influence of address multiCastccovveveneeeieree e 52
Figure 4-11 using name concept With 3 SPS......ccccccvvievecie e 53
Figure 4-12 no name concept With 3 SPS.......cco v 53
Figure 4-13 using name concept With 5 SPS.......cccooiiiiincee 53
Figure 4-14 no name concept With 5 SPS........cccocveie e 53
Figure 4-15 running 1 SP per Machings.........cccccvevie e 54
Figure 4-16 running 2 SPSPer MaChiNEScoceveierenenieeeeeee s 54
Figure 4-17 original COMRIS VEISIONcoeiirinierieneneeeeee e 55
Figure 4-18 COMRIS version with al updates..........ccccoveieieeiecie e, 55

COMRIS

3D

CC

SP

TCP

UDP

VE

ABBREVIATIONS

Co-Habited Mixed Redity Information Spaces
three-dimensond

Conference Center

Secretary Pool

Transmission Control Protocol

User Datagram Protocol

Virtud Environments

Address

Agent

Broadcast

Conference Center

Degree

Diameter

Entity

Links
Multicast

Node

Publish Group

GLOSSARY

A name or token that identifies a network
component. In locad area networks (LANSs), for
example, every node has a unique address.

Autonomous Software which is searching and
ummarize information to send it in the red world

One-to-dl, unrdigble communication
The controlling centrd entity of the COMRIS
sysem that manages globd conference information

including regidration

The degree of a node is defined to be the number of
its neighbours

The longest path between any two nodes

A dient of the infrastructure (For example an agent,
adatabase or atext generation system

A connection between nodes
One-to-many, unrdiable communication
In networks, a processing location. A node can be a

computer or some other device, such as a printer.
Every node has a unique network address

In TCPIP and UDP networks, an endpoint to a
logical connection. The port number identifies what

type of portitis.

Abdraction of multicast group where only the
creator is alowed send messages and add members

Scalability

Secretary
Secretary Pool

Sock et

Subspace

Unicast

Virtual Space

Refers to how much a sysem can be expanded.
Capable of being changed in sze and configuration.
The term by itsdf implies a pogdtive capability. For
example, "the device is known for its scadbility”
means it can be made to serve a larger number of
users without bresking down or requiring mgor
changesin procedure

I nterface between agent and infrastructure
Interface for apool of agents and the infrastructure

The mechanism for credting a virtua connection
between processes

A region of the virtud space, with given properties
and functiondity to aid group interaction between
agent interaction.

One-to-one, reliable communication

The space through which agents meet and interact

Chapter 1

1 Introduction

1.1 Overview

The dramatic improvements in globd interconnectivity due to intranets,
extrangts, and the Internet has led to an exploson in the number ad
vaiety of new daaintensve gpplications. One of these applications are
virtud redity sysems, with their virtud environments. Current research in
large-scde virtud environments can link hundreds of people and atificid
agents with interactive three-dimensond (3D) graphics, massve teran
databases, globd hypermedia and scientific datasets. One of these research
projectsis the Co-Habited Mixed Redlity Information Spaces (COMRIS).

The COMRIS project ams to develop, demonstrate and experimentally
evduate a scdable gpproach to integrating the Inhabited Information
Spaces schema with a concept of software agents. The COMRIS vison of
co-habited mixed-redity information spaces emphasizes the co-habitation
of software and human agents in a pair of loosely coupled spaces, a virtud
and a red one. However, this project does not pursue the perceptua
integration of red and virtud space into an augmented redity. Instead, the
coupling ams at focusng the large potentid for useful socid interactions
in each of the spaces, so that they become more manageable, goa-directed
and effective.

The COMRIS project uses the conference center as the thematic space and
concrete context of work. The conference center is a structure of places for
regidration, presentation, refreshment, and so on. At a conference, people
gather to show ther results see other interesting things, find interesting
people, meet officias in person, or engage in any kind of discusson. The

possbilities of interaction & such an event are enormous, it is very

informationrintensive, and the great diversity of topics and purposes that
are being addressed make it difficult to get everything done.

virtual space

physical space

F?’% f
fa’ﬁ"
i‘ ,g/

intorost bamod navigakon

SORALPUEED

Figure 1-1 COMRIS overview

In the mixed-redity conference center, red and virtud conference
activities are going on in padld (as presented in Fgure 1-1). Each
participant wears its persond assstant (PA), an edectronic badge and
earphone device, wirdesdy hooked into an Intranet. This persond assigtant
— the COMRIS parrot - redizes a bi-directiond link between the red and
virtua spaces. It observes what is going on around its host (whereabouts,
activities, other people around), and it informs its host about potentidly
useful encounters, ongoing demondrations that may be worthwhile
atending, and s0 on. Severd persond representatives (PRA), the software
agents that participate on behdf of a red person in the virtua conference,
gather this information. Each of these has the purpose to represent, defend
and further a paticular interest or objective of the red participant,
including those interests that this participant is not explicitly attending [3].

To accomplish this task it is necessary that each agent communicate with
the other agents in the virtual space. For this purpose, the agents send
unicad messages (a point-to-point connection). Each agent can only

communicate with known agents, which they acquaint in specid interest
groups (also called subspaces). Such a subspace (which is centraly
managed) is combing agents with a familiar topic and a place to get the
name of other agents. Subspaces are like a chat room on the Internet,
everyone can join, leave, lisen and spesk. In contrast to the subspaces
exigs publish groups. They ae like a radio channd, everyone can ligen

but only one agent can send (the owner of this group).

Virtual world

prasantations of
rede and kil

Lange groups
af dimdualz
Communiy of Sgents that
krscams ety cdhar and who
sham an infarast

Compatancs & Evaluating tha = =

Relavance
compatiors
11. : Eﬂﬂa 33441 Atteniion; imporant
1 Mt Eas fim

Figure 1-2 The Virtal world of COMRIS

Over these places in the virtud world, it is possble to find people in the
red world with dmilar interets and to make red conversation (as

presented in Figure 1-2).

1.2 Conceptual formulation

A vaiety of network dements are required to scde up virtud
environments (VES) to ahitrarily large sizes, smultaneoudy connecting
thousands of interacting agents and al kinds of information objects. VE

congruction can include concepts and components from nearly any subject

area. The variety of desred connections between people and agents can be
summarized by the dogan “connecting everyone to everyone’. As diversty
and detall of virtuad environments incresse without bound, network

requirements become the primary bottleneck.

The virtud space is the environment through which COMRIS agents will
communicate and function. The virtua space is not only a conceptud
home to hundreds or even thousands of agents, but aso to other
components with which these agents communicate. All such components
and agents are termed entities and communicate via the virtud Space

communication infrastructure.

If n agents work in the virtud space and each agent sent each other agent
one message, then n*(n-1) messages are generated to transmit over the
infrastructure. For example, a conference with 100 members (per member
exists 5 interest based agents) can generate 250.000 messages and a
conference with 1000 members can generate 25 million messages [8]. This
O(m?) transport problem needs a \ery scdable infrastructure to tranamit all
these messages with a smdl deay. Within the context of COMRIS,
scaability concerns the ability to increase the number of users and agents
without degrading the usahility of the sysem [2] [9].

This work is trying to show ways to enhance the scaability of the current
COMRIS infragtructure. It is discusing over theoretica possbilities and
implementing some of then. The COMRIS Project started in 1998 and will
finsh in December 2000. Due to this condition, this work is trying to
implement some changes to enhance the scalability and is taking about
dternatives for projects with smilar facts. The tests in chapter 4 show the
effect of asmdl change on the whole infrastructure.

1.3 Organization of thisthesis
Thisthessis organised asfollows

- ashort overview of COMRIS

- aconceptud formulation of my work

- what is scdability and why isit useful

- anoverview about the conditions for asystem like COMRIS

- ashort brief introduction to addressing and routing (to understand
the later sections)

- an oveview about different kind of topologies and their influence
on COMRIS

- further possbilities to enhance the scaability (direct connection,
address multicad, etc.)

- andyss of some implementations (direct connection, address
multicast, specid name concept)

- concluson

Chapter 2

2 Problemsof network scalability

2.1 What isscalability?

Scaahility is a popular buzzword thet refers to how well a hardware or
software system can adapt to increased demands. For example, a scalable
network system would be one that can start with just a few nodes but can
eadly expand to thousands of nodes. Scaability can be a very important
feature because it means that you can invest in a sysem with confidence

you won't outgrow it}

2.2 Conditionsfor alarge scale virtual and agent environment

Each sysem has conditions, which describe the behaviour and the
regrictions for the system. The following section defines and identifies the
required specification, which is needed by the communication
infragtructure of a virtud environment like COMRIS. It focuses on the
communication architecture and on different technica aspects that play a
role in the implementation of the virtua space of COMRIS[2].

2.2.1 General Architecture

The communication infrastructure provides support for dialogue between
agents. An Agent interface to the infradructure exids through secretaries
and an individud secretary supports each agent. Both the implementation
of the infrastructure and the location of peers are invisble to agents. In
order to communicate to a peer or group of peers, an agent Smply passes a
message to the secretary.

! hitp://webopedia.internet.com/TERM/s/scalable.html

6

An overview of the infragtructure is presented in Fgure 2-1, shown from
the perspective of the Infrastructure Developer.

- ~,
. Infrastructure "
[|
|
PRA (%)
Conference PRA 8 System Kernel |
Centre (CC) g
PRA Sfa— 1 3 |
‘ !
PRA = Personal
Representative Agent ecvetary ecretary
l\ Pool Pool

ANy

Figure 2-1 COMRIS infrastructure

The sequentid initidisation of the infresructure (in terms of

communications from new agents), different type of communications
services available from the infrastructure, is outlined in Figure 2-2.

Infrastructure

o)
0
0, > System Kenel i
PRA 0,
/ A I

(i) 1))))y |
PRA = Personal y A 4 |
Representative Agent (v) T Secretary Secretary

Pool

Figure 2-2 Secretary communication within the infrastructure

PRA

Conference
Centre (CC)

Areyaloes |_‘\\

The numbers in parenthesis indicate the logica sequence of messages and
the subscript indicates the type of communications, where U indicates
unreligble communications protocol (Multicast), while T denotes a reliable
communications protocol (TCP). The sequenceis asfollows:

() An agent communicates with kernd to register
(i) The kernel accepts the regidration.
(@ii) Anagent joinsin a subspace viathe central kernel.

(iv) The infrastructure sends a message to al member of the subspace,
with the information about the new agent.

v) Subsequent messages requiring reidble communications are sent
viathe centra server or direct connections.

2.2.2 Qubspaces

Subspaces represent (possibly overlapping) interest-based regions of the
virtud space. A subspace may be thought of as a message forwarding
savice for groups of agents with a common interest. An agent may
communicate to one or, sequentidly, to dl other members of a subgroup to
which it belongs.

2.2.3 Publish groups

A publish group supports unidirectiona one-to-many communication and
is andogous to a mall digribution service. In contrast to Subspaces (to
which an agent may request to join and leave, see below) membership of a
Publish Group is under the direct and sole control of the creator agent.

2.2.4 Communication across the infrastructure
The infradiructure only supports the rdiability of communication between
secretaries. The secretary is not responsible for whether or not the agent

actudly reads or processes the message.

One-to-one communication between secretaries is based on TCP streams
and may thus be congdered religble. Guaranteeing the rdiability of one-to-
many communication can have implications on timdiness, scdability and
error recovery. For this reason rediable one-to-many communication is
provided as an option that may be selected by the creator of the group.
Both Subspaces and Publish groups will be given this facility.

2.2.5 Communication related requirements

Communication - Agents must be able to communicate with each other.
Point to point messaging is a requirement. The Persond Agents are able to
uniquely identify the senders and recelvers of messages.

Communication reliability - When an agent receives a message it must
also process the message. The agent is not obliged to redly act according
to the indruction in the message. It may decide not to peform what is
dated in the message, but the agent may not smply dump or ignore the
message before parsng it. This shdl result in a nonrepudiation
communication where an agent can not fasdy deny that it ever receved

the message.

2.2.6 Agent specific related requirements
The following requirements are described from the perspective of the
communication infragtructure.

Identification — It must be possble to uniquely identify each agent.
Persona Agents must have a unique ID (eg. name). This uniqueness of
this name is managed by the virtud space (i.e. the Agent Management
System where agents can register themselves)

Autonomous — Persona Agents must be able to reason about their own
date and act according to it. The internd date of the agent is not only
changed through environmenta <timuli, i.e. input and outputs, but aso

through internal processes.

Scalability — The agent performance may not drop unacceptably, if the
number of competing persona representation agents grows. The persond
agent mugt efficiently handle the management and communication

2.3 Why dowe need network scalability?

A network must provide connectivity among a set of computers.
Sometimes it is enough to build a limited network that connects only a few
sdect machines. In fact, for reasons of privacy and security, many private
(corporate) networks have the explicit god of limiting the set of machines
that are connected. In contragt, other networks (of which the Internet is the
prime example) are desgned to grow in a way tha dlows them the
potentid to connect dl the computers in the world. A system that is
designed to support growth to an arbitrarily large size is sad to be scaable

[1].

O

a)

O
y L _T T
o ©

Figure 2-3 Direct links: @) point-to-point; b) multiple access

Network connectivity occurs & many different levels. At the lowest levd, a
network can consst of two or more computers directly connected by some
physcd medium, such as a coaxid cable or an opticd fiber. Such a
physica medium is cdled a link or connection and the computers that are
connected through such a link, are cdled nodes. As illustrated in Figure
2-3, physcd links are sometimes limited to a pair of nodes (such a link is
sad to be point-to-point), while in other cases, more than two nodes may
shae a dngle physcd connection (such a connection is sad to be
multiple-access). Whether a given connection supports point-to-point or
multiple-access connectivity depends on how the node is attached to the
connection. It is adso the case that multiple-access connection are often
limited in Sze, in terms of both the geographicad distance they can cover
and the number of nodes they can connect. In the COMRIS project, the

10

links are not physicd connections, they are logicad links, but they have the
same interpretation as the gpplication layer (see Figure 2-4). This layer is
represented by the user interface, agent intelligence, and so on. In contrast
to physical networks (which are to find on IP Leve 1 to 3), the COMRIS
communication infragtructure is resded on IP Level 4. However, this is not

areason not to use physical network desgnsfor alogica infrastructure.

OslI

Application

Presentation

Session

Process /
Application

Transport

Transport

Network

Internet

Data link

Physical

Data link

\

J

J

Applicationsinvoke TCP/IP services, sending and
receiving messages or streams with other hosts.
Delivery can be intermittent or continuous. The
COMRIS infrastructure is resided in this layer.

Provides host-host packetized communication
between applications, using either reliable delivery
connection-oriented TCP or unreliable delivery
connectionless UDP. Exchanges packets end-end with
hosts.

Encapsulates packets with |P datagram which
contains routing information, receive or ignores
incoming datagrams as appropriate from other hosts.
Checks datagram validity, handles network error and
control messages.

Includes physical media signalling and lowest level
hardware functions, exchanges network-spedfic date
frames with other devices. Includes capability to
screen multicast packets by port number at the
hardware level.

Figure 2-4 Correspondence between OSI and I P protocol layer model

A network with nodes can be described by two properties. Two nodes are
neighbours if there is a link connecting them. The degree of a node is
defined to be the number of its neighbours. A high degree means that a
node has many direct connections to other nodes. For example, in Figure
2-3athe degreeis 1 and in Figure 2-3b the degree is n (number of nodes on
the bus). The diameter of a network is the longest path between any two
nodes. A small diameter is preferable, because it decreases the delay of a
message through the infragtructure. In Figure 2-3 both examples have a

11

diameter of 1. These properties are useful to recognise the scadability of a

communication infragructure.

If computer networks were limited to gStuations in which dl nodes are
directly connected to each other over a common physica medium, then
networks would be very limited in the number of computers they could
connect. On the other hand, the number of wires coming out of the back of
each node would quickly become both unmanageable and very expensive.
For a more logica environment, like the COMRIS infrastructure, is it
meaning, that there are more open socket connections between the nodes
and that needs more memory (which is not endless avalable). Fortunately,
connectivity between two nodes does not necessxily imply a direct
physca connection between them. Indirect connectivity may be achieved
among a st of cooperating nodes. Congder the following two examples of

how a collection of computer can be indirectly connected.

Figure 2-5 Switched network

Figure 2-5 shows a set of nodes, each of which is attached to one or more
point-to-point links. Those nodes that are attached to a least two
connections run software that forwards data received on one link out on
another. If organized in a symmetric way, these forwarding nodes form a
switched network. There are numerous types of switched networks, of
which the most common are packet-switched and circuit-switched. The

12

important feature of packet-switched networks is that the nodes in such a
network send discrete blocks of data to each other. Think of these blocks of
data as corresponding to some piece of application data such as a file, a
piece of email, or an image. Each block of datais caled either a packet or a
message.

Packet-switched networks typicdly use a draegy caled dore-and-
forward. As te name suggests, each node in a store-and-forward network
first recaelves a complete packet over some link, stores the packet in its
internad memory, and then forwards the complete packet to the next node.
In contrast, a circuit-switched network first establishes a dedicated circuit
across a sequence of links and then alows the source node to send a stream
of bits across this circuit to a destination node. The mgor reason for usng

packet switching rather than circuit switching in a computer network is
efficdency.

The doud in Figure 2-5 diginguishes between the node on the insde tha
implement the network (they are commonly cdled switches, and their sole
function is to store and forward packets) and the nodes on the outside of
the cloud that use the network (they are commonly cdled hosts, and they
support users and run application programs). In generd, this document
uses a coud to denote any type of network, whether it is a Sngle point-to-
point link, amultiple-access link or a switched network.

13

Figure 2-6 I nterconnections of networks

A second way in which a st of computers can be indirectly connected is
sown in Fgure 2-6. In this Studation, sets of independent networks
(clouds) are interconnected to form an internet work or Internet for short. A
node that is connected to two or more networks is commonly cdled a
router or gateway and it plays much the same role as a switch. It forwards
messages from one network to another. Note that an internet can itself be
viewed as another kind of network, which means that an internet can be
build from an interconnection clouds to form lager clouds. Router,
gateways and switches are &rms from physica networks. The COMRIS
infrastructure takes over this part of the kernd, but the rule is the same.

Just because sets of hogts are directly or indirectly connected to each other
does not mean tha we have succeeded in providing hogt-to-host
connectivity. The fina requirement is that each node must be able to say
which of the other nodes on the network it wants to communicate with.
This is done by assigning an address to each node. An address is a byte
gring that identifies a node. The network can use a node's address to
diginguish it from the other nodes connected to the network. When a
source node wants the network to deliver a message to a certain destination
node, it specifies the address of the destination node. If the sending and
receiving nodes are not directly connected, then the switches and routers of

the network use this address to decide how to forward the message toward

14

the dedtination. The process of determining systematicaly how to forward
the message toward the destination node based on its address is called
routing.

This brief introduction to addressng and routing has presumed that the
source node wants to send a message to a sngle destination node (unicast).
While this is the most common scenaio, it is dso possble that the source
node might want to broadcast a message to al the nodes on the network.
Or a source node might want to send a message to some subset of the other
nodes, but not al of them, a Stuation caled multicast. Thus, in addition to
node-specific address, another requirement of a network is that it supports
multicast and broadcast addresses [1]. This is used in the publish groups
and subspaces, which are explained at section 2.2.2 and 2.2.3. The nodes
can be agents, secretaries or kernels in the COMRIS project and the
address is the name of an agent. It is not necessary for an agent to know the
path (routing way) in the infrastructure, only the receiver name is important
(as described in section 2.2.1). The infragtructure is searching for the
shortest path to transmit the message. Nevertheless, for the infrastructure
design it is important to think about the routing path. Chapter 3.1 describes
different possbilities to keep this path as smal as possible.

15

Chapter 3

3 Possibilitiesto enhance the scalability

With a look a the specification of COMRIS (see section 2.2), we can
imagine that a scdable sysem has to handle thousands or millions of
messages, because each agent has to be able b communicate with each
other agent. Also it is necessary to have a centrd point for the name
management, only with such a poaint it is possble to uniquely identify the
agent. Condder the following two examples of wha dtudions the
infragtructure has to handle in the red system.

Terminal
try login

—\| —» with name
Agent W‘
user 1 E "ABC"
Terminal
.l try login
—> = —>|:| with name

COMRIS
VR space

user 2 .. "
Agent ABC

"ABC"

Figure 3-1 two user try to login with the same name

Figure 3-1 shows two users, which try to login to the VR space at the same
time and with the same name. If we look to the COMRIS specification, we
can see that this Stuation is not alowed, which means that one user should

get an error message and this user has to try again with another name.

16

peer-to-peer communication

Agent3

Figure 3-2 peer-to-peer communications between agents
The second example is a usud communication between two agents, which
is shown in Fgure 3-2. There are no redrictions, which can cut off a
connection between any two agents.

There ae different ways to enhance the scdability of a system like
COMRIS. The following sections describe some ideas, which can be useful
to make the infrastructure more flexible and faster.

3.1 Different network structure

The following discusson of the properties of different topologies is based
on a collection of nodes that communicate via links. These sections spesk
about some ways to digtribute the traffic or even to enhance the scdability
for the nodes.

3.1.1 Sar topology, the current COMRI Stopology

The dtar topology is a very popular network structure. Most computer
centers use the star. This topology is based on a centrd node (sometimes
cdled the hogt) in the “middie’ and dl other nodes are arranged around
this central point. The central node may just route dl transmissons to ther
respective destinations or also @ry out some processing of its own. Data
is tranamitted through the networks by the host cdling each node in turn to

determine if it has any data to transmit. (In some dar networks, the

17

trangmisson is indigated by the individua nodes, which send an interrupt
to the host to signal that it has data ready to be transmitted).

perscnal agent

- 5" oW
-_—_ agents
ey — o AR
a0 oo . thebottieneck
- "o
socretary

poo

Figure 3-3 Example for a star topology

The degree of such a system is usudly one (except the degree of the centra
node, which is depend of the number of nodes) and in addition, the
diameter is very smdl with two. If an agent wants to spesk with other
agents, the communication goes through the central node. However, this is
the bottleneck of this topology.

In this sysem, there is no problem with both the examples (see the
beginning of this chapter). Even with the centrd node, there exigts only one
entity-list (in this list al agents are registered, with name, address and port
number) and a double regigration with the same name is not possible. The
star topology is the current COMRIS network structure.

This topology is very eassy to implement with dl the COMRIS
specifications, but unfortunately not very scalable. Chapter 4.6.1 shows the
speed of the regigtration of up to 5000 agents and transmitting up to 20000
messages as soon as possble. In comparison with further methods this
infragtructure is very dow (which are described in 3.1.5).

18

Star advantages:

- The response time is generdly very fadt, but this depends mostly
upon the power of the host.

- Concurrent processing by the host is possible.

- Doubtlessy the uniquely identification (because the centra node
has the entire entity-list)

Star disadvantages:
- If the host fails, the whole network falls.

- The centrd node can only handle a certain number of nodes and the
network cannot be expanded beyond this number (section 4.6.1
shows some results).

- As each node has its own communicetion line, there is a large cost
initsinitid ingdlation.

- The centrd node is the bottleneck (entire communication is going
over this point)

3.1.2 Ring topology, expandable as the star

Ring networks condgst of nodes directly linked to each other by a single
communicetion line. Messages travel from node to node around the ring
until it reaches its correct destination. As with the bus network (described
in the next section), each node must be cgpable of recognizing its own
address to receive a message. If a message is passed to a node, which is not
the correct dedtination, the message is tranamitted to the next node in the

rng.
The ring with a token-based concept

To control access to the line such that two messages are not transmitted
amultaneoudy, a method cdled "token passng' is implemented. A token
is a frame of bits, which is passed from one node to the next. The token
may be "empty" or it may contain a message. If an empty token is received

19

and the node wishes to tranamit data, it holds the token and writes into it:
the destination address, its own address and the message itself. The token is
then passed onto the next node. As the token is no longer marked as
"empty"”, it ensures that nodes cannot transmit messages a the same time,
When the token is findly passed to the node which has an address
corresponding to the token's dedtination address, that node reads the
message and then marks the token as being read. The token is then passed
on to the next node and continues to be passed around the ring until it
completes a full crcuit and reaches the node, which originated the
message. It is only at this point that the message is erased and the token is
again marked as being "empty".

A ring of n nodes has a degree of two, because the node is dways
connected with two other nodes. The diameter of a ring grows as more
nodes are added, so it isn/2 for abi-directiond ring. [5]

personal agents
- o Wik
- g agents
- o Vil
-9
- o i
thering secretary '

poal
Figure 3-4 Examplefor aring topology

The ring with atomic-broadcast concept

If the ring uses a token to synchronize the message trandfer in the network,
there is no problem with the agent regidration or with peer-to-peer
communicetion. Nevertheless, a disadvantage of the token system is the
delay-time. A message can only be sent if the node has the token. Another

20

way to use the ring network topology and to be sure that the unique name
concept of COMRIS is il possibleisto use ardiable broadcast [17].

The reliable broadcast performs two phases of broadcast communication.
A node knows that a message is rdiably broadcast if the message (phase 1)
and the related acknowledgment (phase 2) of dl nodes are received. The
atomic broadcast is an extenson of the reliable broadcast. An additiona
numbering dgorithm and sorting technique ae used in the aomic
broadcast. It ensures a globally unique order of broadcasted messages at dl
nodes, s0 that each node knows that every node got the message in an
unique order, i.e. who tried the registration at irs, if two secretaries try to

register the same name.

The atomic broadcast concept allows communication between nodes
without waiting for a token, i.e. for forwarding a message. However, it
dlows dso the unique name concept for agent and publish group /
subspace regigration. With this concept it is possible to decrease the delay
for the whole message transfer and thus incresse the scalability.

The ring is a good way to enhance the scdability of the COMRIS
infragtructure. This topology is easy to implement and much more scalable
than the star network. Additiona nodes can be added without effort and
these nodes can be used for new secretary pools or kernels (which increase
the number of members). If a node gets a message from a connected
secretary or from a neighbour node, then this node has to wait for the
token. With the token it is possible to send dl messages, which arrived
gnce the last time the node got the token. To prevent a node from keeping
a token for a long time (while sending lots of messages) it is useful to use a
maximum time to hold the token to send or to use ingead the aomic
broadcast concept. However, with the ring it is easy to use more than one
kernd node or to use a digributed system (see section 3.2). Only the

21

overhead of trangmitting a message is higher than the gar topology,
because the message transport needs additiona operating cost.

Ring advantages.

- Vey good for a medium number of nodes which require very high
transmission speeds.

- Expandoniseadly achieved.

- Unique regidration is not a problem, due to using a token or atomic
broadcast.

Ring disadvantages:
- Transmisson delays are long even with light traffic.

- Each node must be turned on for the network to operate. (Or each
node's attached network interface must be continudly active.)

- Falure of agngle node will hdt a unidirectiond ring network.

22

3.1.3 Bustopology, an impractical topology

A bus topology is one in which al devices connect to a common, shared
connection (sometimes @lled the backbone). Most bus networks broadcast
ggnds in both directions on the backbone connection, enabling al nodes
to directly receive the sgnd. Some buses, however, are unidirectiond:
ggnds travd in only one direction and can reach only downstream

devices.

the busisusing multicast

Figure 3-5 Example for a bus topology

Any node can communicate with any other node by broadcadting its
message on the bus. All nodes continuoudy monitor the bus and when a
message is detected which has the correct address code attached, that node
acts upon the transmisson. (Each node has its own network address)
Before any node may tranamit a message, it mugt firg "ligen” to the bus to
determine if any other tranamissions are currently being broadcast. Once it
determines that the bus is clear, it commences transmission. This process is

known as "contention”.

The degree of this network structure is unpredictable, because it depends
on the number of nodes, which are connected to the bus. On the other side,

the diameter is one due to al nodes are connected on one link.

23

Due to a missng centrd node (like in the star network), it is a problem to
register two agents with the same name. A solution for this problem is to
specify a node as the regigration node (only this node can regiser an
agent) or to use a token. With usng a token, this structure is no longer a
bus topology it isaring topology (discussed in the previous section).

The bus is unsuitable for the COMRIS infrastructure. Not only is the name
management difficult. The key problem is the information trangmisson at
the bus, every message is broadcast to the other nodes on the bus. This
cregtes a huge overhead for each message. For a smdl system with not
more then 100 agents and an average of 100 messages per minute, this
system maybe possible. For example, if we suppose that the broadcast of a
message needs 10ms, than it needs 1 sec to send 100 messages but 100 sec

for 10000 messages. However, a huge amount of messages makes the
whole infrastructure extremely dow.

Bus advantages:

- Good for gmal networks with low treffic. (ie Daa is not
frequently transmitted by the nodes.)

- Easy initid inddlaions and easly expanded by adding extra
nodes.

- If any one nodefails, only the part behind that node is affected.

Bus disadvantages:

- The response time degrades rapidly as the data transmisson load
increases.

- Tapping into the bus causes transmission signas to be distorted.
- Unique regigration is not warranted (no centrd registration).

- The bus is broadcagting each message and this incresse the
overhead.

- For logicd infragtructures this is not suitable, the bus is more a
physicd topology.

24

3.1.4 Treetopology, not recommendable for COMRIS

The tree topology is Smilar to the star. A tree has three different types of
nodes, namely a root node (or centra node), interior node and leaf node,
esch with different degree. Usudly, only the lesf node is connected to
other component of the network (i.e. to the secretaries).

Figure 3-6 Example for atree topology

The degree of this network structure is three (for a bi-directiona tree) and
the diameter is 2*log N (where N is the number of nodes). A high diameter
makes the communication path for a message from one agent to another
one very long. That means that the delay for a message can be very high.

The regidration example (see beginning of this chapter) can be a problem,
if the regidration is not in the root node. If the regidration in the leaf or
interior node, than is a system needed, which prevents two different nodes
registering the same name at the same time. Regidration should be done in
the root node, otherwise we might assgn two different nodes a unique.
After a successful regidration or deregigtration, the root has to send an
update of the entity-list to dl the other nodes.

25

A big problem in the tree is to find the direct way to another node of the
tree. However, this is important to transmit a message or to register /
deregister an agent. A solution to this problem is to use a specid name
concept for the nodes. Each level of the tree has it own number and in
addition there exists a consecutive numbering from the left to the right Sde
of each levd (as presented in Figure 3-7).

Figure 3-7 consecutive numbering of atree

The extenson of this tree is only to the right sde and downward possble
(it avoids a conflict with the consecutive numbering). For communicetion
between two nodes it is now possble to caculate the path (it is necessary
to go up or down). Without numbering, it is gill possble to send the
message to the root (which should have al addresses) to forward the

message.

Multicast method, which is often used for physcd trees, is not useful for
logicd trees as it will create huge amount of traffic over the whole tree.
That would make the system very busy and decrease the scability.

How useful is the tree for the COMRIS infrastructure? This is depending
on the kind of traffic. The gar, bus and ring topology have one thing in
common, al nodes have contact with each message. The tree has a
different concept and with a lot of “locd” traffic (only over one or two
nodes) is the tree to prefer. However, sysems like COMRIS, which
generate traffic through the whole infrastructure dl the time, has a big

26

bottleneck — the root. It is like the star, but the overhead for each message
isbigger.

Tree advantages.
- Expandoniseasly achieved by adding extra nodes.

- The diameter of a tree (2*logN) is smaler then the diameter of a
ring (N/2)

Tree disadvantages:
- Transmisson delays can belong with abig tree.

- The network traffic near the root increase with a higher number of
messages through the network.

- If any one node fails, the part beyond this node is affected (If the
root fals, the whole network fails).

- It is not easy to find a specific node in the tree, it needs a specid
routing agorithm.

- Unique regidration is not warranted, unless the root node is used
for it.

3.1.5 Hypercube topology, high debatable

In a highly scaable topology, more nodes can be added without severely
increesng the amount of logic required to implement the topology and
without increesing the diameter. Such a topology is the hypercube. A link
connecting two nodes defines a kdimendond “cube’. A square with four
nodes is a 2dimensiond cube, and a 3D cube has eight nodes. This pattern
reveds a rule for congtructing an rdimensond cube begin with an (n-1)-
dimensond cube, make an identicad copy, and add links from each node in
the origina to the corresponding node in the copy. Doubling the number of
nodes in a hypercube increases the degree by only one link per nodes, and
likewise increases the diameter by only 1 path [1].

27

personalagerls the hypercube
o i

-
- —1iB ig!ﬂ"i
= o Wil
-0
-
sacrelany e_
seCreiary
o

Figure 3-8 Exapmle for a hypercube topology

Communication in a hypercube is based on the binary representation of
node IDs. The nodes are numbered so that two nodes are adjacent if and
only if the binary representations of their IDs differ by one hit. For
example, nodes 0110 and 0100 are immediate neighbours but 0110 and
0101 are not. An easy way to label nodes is to assgn node IDs as the cube
is constructed. When you @py an (n-1)-dimensona cube, make sure the
corresponding nodes in the two copies have the same IDs. Then extend all
the 1Ds by one hit. Append a 0 to the IDs of nodes in the origina cube, and
append a1 to the IDs of nodesin the copy.

111

) O
110 100
/ .

dimension 2

011 001

B (
010 000 dimension 0
O C
dimension 1

Figure 3-9 A 3-dimesional hypercube

Node IDs are the bass for a ample dgorithm for routing information in a
hypercube. An n-dimensond cube will have n-bit node IDs. Sending a

28

message from rode A to node B can be done in n cycles, where on each
cycle a node will ether hold a message or forward it dong one of its links.
On cycle i the node that currently holds the message will compare bit i of
its own ID with bit i of the dedtination ID. If the bits match, the node holds
the message. If they don't match, it forwards the message aong dimension
i, where dimension i is the dimension that was added in the it" step of the
congtruction of the cube (i.e. it is the same “direction” a dl nodes) [5].

The hypercube has the problem that a unique regidration is only possble
with a centrd node (which is not exising in a hypercube). A solution is a
combination from hypercube and centrd node. It means that a series of
nodes assume the centrd node part. All registrations and deregidtration has
to proceed on this specid nodes. To avoid double regidtrations, it is
necessary that al these specid nodes be connected together, i.e. in aring
dructure (see section 3.1.2). For the fird example (see beginning of this
chapter) it means that the registration request has to forward to the nearest
central node, which can execute the request. However, to speed-up this
procedure it is useful for each node to know the nearest centrd node. This
can be achieved by cdculating the shortest path to this specid node. For
example, each node has to know the address of these nodes and can
compute the shortest path, using their own address (using a XOR over both

addresses).

Unfortunatdly, the hypercube is not liner scdable. Each new dimension
doubles the number of nodes, therefore, it is not possble to add only one
node. To avoid one sided network load, it is necessary to distribute the load
over the new nodes. This reeds a specia agorithm to spread the existing
infrastructure over the whole hypercube. However, with the knowledge
about the prospective infrastructure sze (i.e. the maximum of conferee) it
isaso possible to gart the hypercube with a stable dimension.

29

Broadcasting from Node x in an n dimensond binary hypercube can be
performed as follows. First, Node x makes n copies of the broadcast traffic
and forwards it to its n outgoing links. Then, a node receiving broadcast
traffic on its dimengon-k link forwards that traffic to its outgoing links that
correspond to dimensons O through k — 1. Optimad and reiable
broadcasting dgorithms in hypercube can be found in [6] and [7].

Hyper cube advantages:

Fault-tolerant
Very good for ahigh number of nodes.

The shortest path between any two nodes is the dimension of the
hypercube.

If any one node fails, there are (n-1) paths lft.

Hyper cube disadvantages:

Expanson needs a increasing of the dimenson by one and doubles
the number of nodes.

It isonly useful for big network structure,

Unique regidration is not warranted, unless usng a specid
registration modd.

It needs a complex dgorithm, to cdculate the spreading of the
network (if there a change to the next dimension).

30

3.1.6 Summary topologies

The previous sections described some different infrastructures. The word
‘node’ can be replaced by the word ‘kernd’, if we look at the COMRIS
project. For this case, dl these network structures are a subtitution for the
sngle kernd from the current exigting infrastructure. The decison over the
correct infrastructure should be chosen at the beginning of such a project.
Only with the knowledge of the purpose and the specification, is it possble
to make the correct choice of the kind of topology. This choice has an
influence on the flexibility and scdability. It is a difficult decison to
decide which topology is the best for an infragtructure like COMRIS. Only
the star was implemented in the COMRIS infragtructure. Unfortunadly,
this work is written at the end of the COMRIS project and therefore
another topology not implementable yet (except the dar network).
However, on the point of this work it is possble to say tha the dar
topology is suitable for the COMRIS infragtructure. Until a few thousand
agents (1000-10000) are connected over the secretaries to the
infrastructure, the star works wdl (this is equivdent to a conference with
1000 members). Everything that is bigger should use another topology, like
the ring or the hypercube.

Another desirable property of interconnection networks is node symmetry.
A node symmetric network has no distinguished node, that is, the “view”
of the rest of the network is the same from any node. Rings and hypercubes
are dl node symmetric. Trees and stars are not. When a topology is node
asymmetric, a diginguished node can become a communications
bottleneck [5].

Table 31 gives an overview of the different topologies and their assets and

drawbacks.

31

Table 3-1 complete topology overview

Star Ring Bus Tree Hypercube

Degree for centra node =n1 |=2 =n = 3 (for bi-directiond) | =dimengon (x)

otherwise=1
Diameter for centra node d=1 |d=n/2 d=1 d=2*logn d=logn

otherwised = 2 withn=2* 2
Subspaces yes yes yes yes Yes
Publish groups ™ yes yes yes yes Yes
Cross communication ¥ yes yes yes yes Yes
Unicuely identification yes yes not warranted not warranted not warranted ~
Scaable V) limited limited limited limited unlimited
Advantages - easy to implement - good for medium - agmal diameter - ussblefor bigger - for unlimited

- currently COMRIS networks - easy toinitid networks networks

dructure -expangdon is easy - - expanson is easy - fault tolerant

- agndl| diameter - identification is - degreeissmdl - agmdl diameter and

firmed - degree, aswdll for big
- degreeis smdl networks

Disadvantages - central nodeisthe - delay longer for big - for avirtua dructure, | - it needs a specid - it needs a pecid

bottleneck networks difficult to implement routing agorithm and concept to expand the

- not unlimited scalable | - one node can block -need multicast (onthe | names concept dimenson

- ahigh degree the wholering bus) for peer-to-peer - the bottleneck isnear |-

- - ahigh diameter communicetion the root

- ahigh degree -

1) COMRIS Conditions possible or not
2) n=Number of nodes
3) only with special concepts

32

3.2 Centralized vs. decentralized architectures

The debate between centradized versus decentraized (adso caled
digtributed) architectures for multi-user applications is an old one. The two
primay isues ae peformance and consstency. Decentrdized
architectures have been lauded for good performance. They require less
network bandwidth snce only input or state-changing information must be
transmitted between nodes. Decentraized architectures adso provide good
feedback to the agents snce locdly initiated input is handled localy. There
is no wait for the input to be processed by a centrd node and then
transmitted out to the agents. In comparison, centralized architectures
gopear better a maintaining condstency among the other nodes. The
central portion of the sysem sequences the various inputs from the other
nodes (or agents) and ensures that every client sees the same changes at the

sametime[9].

Rendezvous is a good example of a centrized approach to building multi-
usr sysems [11] [12]. Rendezvous relies on a centrd abdraction
connected via bundles of condraints, or links, to multiple views. This is
cdled the abgraction-link-view paradigm (ALV) [13]. In Rendezvous, the
abstraction and the views al run as lightweight processes within the same
heavyweight operating system process. Every user has access to a virtua
termind. From this termind thy have access to a program cdled the
Rendezvous Access Point (RAP), which is their entry nto Rendezvous and
dlow them to use multi-user agpplications or to make user-user
communication. Assume that there are n users in a conference. If every
user provides some sort of nonconflicting input (such as scralling a
window or clicking the mouse at te virtud termind), then O(n?) messages
ae snt through the network. Any sSngle message requires one
transmisson to the abdraction and n-1 transmissons from the centra
abgtraction to the other views. For each user of n users to send a message

(n messages), this becomes n* (n-1) = O(?).

33

The price in network usage, though, is not without merit. Rendezvous
provides a reliably consgtent view to each user. In fact, the communication
mechanism worked so wel that some agpplications relied on the reliable,
sequenced broadcast of state changes even for updating the interface of the
user who made the change [14]. This proved to be a smple and eegant
way to write gpplications.

The Rendezvous abdractions and views described above actually ren
within one process on a sngle processor. Assume that a distributed
condraint syssem was implemented (as described in [12]) and that views
ran on the users machines and not on the machine running the abstraction.
Network traffic is gill O(r?) as described above. However, if this system is
then implemented on a network providing relidble, sequenced multicasting,
the network usage is vadtly improved O(n) = 2*n. Any single message
from a cient would be sent over a rdiable connection to the centra
abdraction and is then multicast to every other dlient, resulting in two
network transmissons. For n clients, this becomes 2*n, or O(n). However,
the overdl message latency is high because the abdraction is dill

processing every message.

In contrast, MMConf is a good example of the replicated approach to
multi-user applications [15]. Although its performance is good (O(n)
network messaging traffic in theory but no centralized bottleneck to add
latency), in practice, gpplicaions built on top of MMConf quite often lost
gynchronization. In addition, applications were abitrarily limited in their
functiondity. For example, MMConf explicitly used rigid floor control and
token passng to avoid some of the synchronization problems. This meant
that some users would have to wait to interact with the gpplication or
would not be dlowed to interact with it at all. Besdes user dissatisfaction,
this floor control policy was a complicated piece of code that relied on

unique tokens and sequence numbers to work properly--it often did not. As

34

another example, certain user-oriented features such as continuous
scrolling were disabled, again to dleviate some synchronization problems.
As a result, application programs presented unnatural interfaces to users or
were less powerful than ther sngle-user counterparts. Much of this is due
to the fact that MMConf was not implemented with true, reliable multicast-
-instead it was implemented as best as possible on top of TCP/IP.

= e g
—@ 9 agents

o AEeaty e o
g e -+ @ o W&
. e -
3 ke el
_ -_ " o
- kernzl o—m 9 Mo “ﬁ

Figure 3-10 Centralized vs. decentralized architectures

The COMRIS infrasructure has three key conditions. communication
(from each agent to each agent), identification and subspaces / publish
groups. With a centrdized architecture is this reachable. One problem of
this architecture is that it is not endlesdy scdable. There is a point on
which the centrd node has to manage too much and the latency increases
rapidly. A decentrdized architecture has not this trouble, but in the
COMRIS case another key problem exists The identification and
ubspaces have to be unique and this is difficult to manage in a totaly
decentrdized system, like a the MMConf project. A solution is a mixed
architecture. For example, the Internet is such an architecture. Each
Internet address is unique and it is possble to communicate with other
members on the world wide web. Section 3.1 describes different
architectures and each node means an independent kerndl. If each kernd is
connected to an amount of secretaries (and secretary pools), then it is
possible to speak about a centraized system, because from a more abstract

35

point of view al kernels are together like one centra node. However, what
happens if the nodes are replaced by kernels and secretaries (or better
secretary pools)? This is a mixed architecture, with some centrd parts (the
kernels) but dtogether it is decentraized.

3.3 Direct connections

Up to now, we have spoken about the didribution of traffic. All these
dructures are useful and needed for huge systems (with thousands or
perhaps millions of agents). Another network sructure, which was not
explained, is a fully connected network. In such a network, each node is
connected with each other node. This system has a diameter of one, but a
degree of n (n equals number of nodes). Such a system is only workable for
andl networks and it is not very scaable. A vaiant of a fully connected
network is a limited connected network. This means only a finite number
of direct connections are possible. For example, if we say a secretary pool
can have ten direct connections, than it is necessary that the secretary pool
after ten connections closes the oldest one, to open a new direct

connection.
mrmq
R ———— u—— -
-
-0 .kerrel pfﬂ
an—* f,f

— f B
p'e,';a.;;m;'“ﬁ —@ —'.iﬁg

Figure 3-11 Example for adirect connection

36

Using direct connections, it is possible to bypass a lot of traffic around the
kernel. The direct connections are an important part of the COMRIS
infragtructure. Section 4.6 shows the influence to scdability. Through the
exoneration of the kernd, the infragtructure is much more scdable (a 3
times). In addition, the direct connections ae the fird dep to a
decentraized architecture. The kernd takes over just the identification task
and the management of the subspaces / publish groups, and the forwarding
of messagesin these aress.

3.4 Usesubspacefor addresstransport

The origind verson of the COMRIS infrastructure for subspaces used a
smple method to send the name of each new member. Only the name was
transmitted, with a single message to each member of this subspace (caled
unicast), and saved in the entity-list of the secretaries.

This method guaranteed that each member of the subspace got the
information about a new agent. However, this is dso a problem, it
generates many messages, which have to be trandered over the
infrastructure. For example, if there are 10 agents and they join one after
one in the same subspace, it creates 45 messages (1+2+3+..+9) to tell the
existing members of the subspace “There is a new agent”. For 100 agents
in a subspace it creates 4950 messages and this makes the whole
infragiructure very busy.

n- l.e with: n=100, a&=1 ,a,.1=99
N a+ta,,) mMsg=4950

Each member of the subspace should get the information about a new
member and therefore it is possible to use a multicast (see 2.3) for the

trangtion. Now it crestes only one message per entry and this unburdens

37

the infragtructure. In contrast to unicagt the multicast is not rdiable, but the
probability is very high that an agent will gets this information (about the

new agent) over another way (another subspace or direct communication).

agent ABC agent ABC

join in

msg: ABC

subspace

msg: ABC, address, port
msg: ABC

Figure 3-12 unicast vs. multicast entry message

Another key problem of the origind method is there is not enough
information to create a direct connection (see section 3.3), which needs an
address with a port number. Without this information, the secretary has to
ask the kernd dl the time for the address, or the kernd to forward the
message. To avoid this gdtuetion it is better to multicast the name, the
address and the port of a joining agent (as presented in Figure 3-12).
Obvioudy, it makes the entry message higger, but it removes the kernd
load. This is an important feature for the infrastructure. The subspace is
usudly used as an exchange plaform for names from other agents with
gmilar interests. It helps to decrease the kernd load and therefore the
kerne is less busy for an important job. Section 4.6.3 compares the
difference between both variants.

3.5 Special name concept

There ae different ways to enhance the scdability of a sysem like
COMRIS. One way is to increase the capacity of the network Structure, to
handle dl the traffic over the network. Another way is it to reduce this
traffic. Such a way is to give each agent name a specid extenson, to

38

recognise the source of this agent. For example, in the COMRIS project
each agent can tak with each other agent, but the secretaries do not know
where in the network the receiver agent is. Of course, in the current project
each agent has an entity, which should include the name, the address and
the port. Neverthdess, sometimes this information is unknown and they
need a lot of memory. That sometimes only a name is known is conditiond
on agent inteligence or through externd input (from the red world). The
only thing which is dways available is the name of the agent.

The idea of this specid name concept is an extenson of the agent name.
For example, if agent ABC is a member of secretary pool 1, and then this
agent gets the extenson 1 (ABCH#1). If the agent moves to another
secretary pool, i.e. to secretary pool 2 the new extension is 2 (ABC#2). In
case that this agent is a persond agent (directly connected to a rea person),
the extenson is 0 (ABC#0). Normadly, there is a direct connection between
the secretary pools (see section 3.3), but this connection has the name of
the creator agent (conditiond on the programming of COMRIS). The
problem is, if an agent (ABC) from the same secretary pool tries to make a
connection to an agent from the other secretary pool, the infrastructure
does not know that an older connection (to DEF) exists. The secretary pool
1 sends the message to the kernel and this forwards the message to
secretary pool 2, which submits the message to the mailbox of agent DEF.
With this extension it is possble to save the connection under the universal
secretary pool name, instead of the agent name. Now it is possible for the
infradructure to recognize that an agent is trying to make a link to a
secretary pool, which dready exigs. The main benefit can be achieved for
agents in secretary pools, because they are the mgority in the infrastructure
and they creete the primary traffic between secretary pools.

39

|

— ——— with extension

existing direct connection

e without extension

Figure 3-13 expample for a message path

To get the full effect for the COMRIS infragtructure it is necessary that this
extenson is adways bonded with the agent name. Unfortunatdy, a this
moment it is not longer completely redizable. The COMRIS project is to
advance to expect of the other COMRIS partner that they implement this
concept now. The current version of the infrastructure is using this concept,
but the extenson to the outsde world is hidden. That makes it not so
effective (see section 4.6.4). Neverthdess, this concept was very useful for
the visudization module of the COMRIS infrastructure It is now possble
to associate an agent to a secretary or secretary pool [10].

40

Chapter 4

4 Implementation, I ntegration and Tests

4.1 Description of existing COMRIS infrastructure

After three years of development the man pat of the COMRIS
infragtructure was dready implemented and working a the beginning of
this work. The infragructure of COMRIS is written in JAVA and each
kernd, secretary and secretary pool is running in its own java virtud

machine.

The communicatiion infrastructure enfolds 65 class-files with over 500
methods. Due to the fact thet the infrastructure was originaly written in C
and then transformed to JAVA, the object oriented gpproach of JAVA is
not complete. This makes changes at the source code more complicated or
requires implementations two or three times. At the beginning of this work,
the COMRIS infragtructure was bascaly done, but only the kernd was
used for communications between the secretaries. For the following
implementations it was partly necessary to make some changes to the flow
diagram. Especidly the send ad receive message needed a partid
redesign.

The generd functioning of the communication infrastructure is described
in Fgure 4-1. It should show the event trace for different activities. The
firda dep, after the initiation, is the regidratiion of the secretaries and
secretary pools and, of course, of the agents. Then it is possble to register
the subspaces and publish groups, in which the agents can join and dart to
exchange information. If an agent finds other agents with amilar interests,
the direct communications are darted. After the information exchange, it is
necessary to send a message to the red world and to give the status of the

information exchange to the conference member.

41

Secretary Secretary

kernel Secreta
Pool 1 Pool 2 ry
register SP1
register SPs /
w’ register
register an < agent ABC
agent
ACC
—_— |
— | register SP2
register agentA | accept >
D —
< register agent B
—_ 0
>
accept B
register agents with register agent N register agent N
the same name
. agent N exis
twﬁ&—‘
with A
W’ join in subspace
— | Wi
join in a subspace
x\)
new member new member
send B msg from A :
send messages
between agents <*
send address forward msg
——sendBmsg fomA
oA |
send success .
message to real
world send ABC msg from A —!

Figure 4-1 Event trace of the COMRIS infrastructure

The message format is XML, which implies an XML parser is needed to
trandate the message and to figure out the next action according to this
message. With this proper format, it is aso possible to have an interface to
other agent systems and to exchange information with them (provided in
later versons). For example, the Visudisation Tool is usng pats of the
basic secretary method and sends and receives messages (which are based
on XML) to get the gatus information about the infrastructure [10]. Due to
the fact that the Visudisation Tool is like a secretary, but with another
assigned task, it was necessary to implement some service routines for this
tool. The additiona methods replay the request for information of the
visudisgtion toal.

42

4.2 Implementation of direct connection

Message

use send method
send(destination, message)

is it local? yes——Pp{ process message

no

¥

try direct exists connection

connection T NWith this name? 4

no
is destination in try direct
entity-list? connection

|[¢——not possible

possible =+ send message

not possible

no

J

ask kernel fo
address

kernel should
forward message

.

send success send error
message message

Figure 4-2 Message flow diagram for direct connetion

The firg thing that was implemented was the direct connection. For this
purpose the direct connection method was integrated in the send method.
Now, when an agent sends a message to another agent, the send method
tries to make a direct connection. Figure 4-2 shows a message flow
diagram. The success of the direct connection is shown later on in this

chapter.

43

4.3 Implementation of address multicast

join in Subspace
Request

use joinSubspace method
joinSubspace(agentname, subspaelD)

send unicast
Send(Subspace, name, [—
address, port)

send multicast
possible —] McastSend(Subspace,
name, address, port)

not
possible

try multicast
message

add member to
subspace list

}

send kernel “join Subspace
message"

send
successful?

yes

¥

send success send error
message message

Figure 4-3 Flow diagram for address multicast

The second implementation was the address multicas. The working
principle is quit smple, as seen in Fgure 4-3. If an agent joins in a
subspace it is important, for the existing agents in this subspace to know
not only the name but adso the address and the port of the new agent.
Obvioudy, this makes the multicast message bigger and tekes more
memory a the entity-li, but the multicast is much faster than a unicast
message to each subspace member. It makes the direct connection easier

and reduces the traffic over the kernd, because now it is no longer

necessary to ask the kernel for the address of the destination agent.

4.4 Implementation of special name concept

Another update was the specid name concept. This function can be
implemented in different ways. One posshility is to enhance the agent
name with an extensgon, which is represents the secretary or the secretary
pool. For example, ingead the name ABC is the new name ABCHO. The
extenson number uses the number of the secretary pool (which is aways
garting with 1) and an agent from a secretary has the number 0. With this
modd (as presented in Figure 4-4), dl persona agents in a secretary have
zero, but it does not matter, because these agents do not produce so much

traffic and they arein the minority.

a#l

secretary

ABC#0 secretary TS pool 1

b#1

Kernel

c#2

secretary

DEF#0 secretary pool 2

d#2

Figure 4-4 each agent has an extension

The old modd: If an agent tries to send a message, the direct connection
method has to compare the name of the dedtination and the existing
connection. If such a connection is not avalable, the method has to search
for a connection with the same address and port number. The problem is, if
the address and the port number are unknown by the agents. In this case,
the message has to be sent to the kerndl and forwarded to the destination.

45

The new modd: Now, if an agent tries to send a message, the direct
connection method looks for the extenson and compares jugt this
extenson with exising connections to other secretary pools. This should

reduce the comparisons and the requests a the kerndl.

Unfortunately this modd is not applicable now, because the COMRIS
project is a its end and this modd needs changes not only a the
infragtructure level. Another posshbility to implement this concept is to
expand the data set entry. The name, the address and the port number of an
agent is saved in the dataset entry. A new entry is the extenson number.
The difference to the upper modd is, this entry is saved by the secretary

and isnot visble to the outside (as presented in Figure 4-5).

secretary

DEF, add, port, 0 secretary pool 2

Enity-list:
¢, add, port, 2
d, add, port, 2

secretary
a, add, port, 1

Figure 4-5 the extension is saved at the secretary

46

45 Description of Controlled Experiments

The Infrastiructure layer provides the COMRIS agents with many different
communication protocols. However, much of the functiondity is hidden to
provide smplicity of use. To initiate communications, the agents only need
to tak to ther dedicated Secretary, which contains an interface into the
Infrastructure. The Secretaries and the rest of the Infrastructure, i.e. the
centrd Kernd, can then ded with the mechaniam of sending or receiving
messages. It is clear therefore that the underlying speed, rdiability and
scaability of the Infragtructure are vita to the upper layers of the project.

The following experiments am to test the characterisics of the Java
Infrestructure with different versons. The most important factors are
scaahility, i.e. the reaionship between the sze of the Infrastructure and its
performance, and reliability. The scalability can be broken down into the
following key areas for experimentation:

- number of regigrations
- determine outcome of direct connection
- determine outcome of address multicast

- determine outcome of special name concept

The dze of the Infrastructure layer is limited by the
performance/capabilities of the maching(s) that it resdes on. There is, of
coursg, a limit to the amount of hardware that can be dedicated to this task
S0 redidic numbers of regidered agents running on a sngle machine are
required. Currently the Kernd acts as a central name server and resides on
a dngle machine. As the Infrastructure grows the load on the machine
running the Kernd will aso grow. Messuring the performance of different
machines, whils running a Kernd through a large regidration sesson,
should give a quantified answer to how the above condraint will restrict

47

the Infrastructures performance, and how many agents can successfully
register in a set period of time.

The sze of the Infrastructure dso affects the frequency of message sending
as there are more entities wishing to send messages. A critica point or
bottleneck for the message sending will occur a the regidration phase,
numerous agents wishing to regiser with the Kernd a once. Another
critical time is when agents join a subspace.

When deding with the message sending itsdf there are two main varigbles;
the sze of the messages and the frequency a which they are being sent.
Both of which affect the message delay. Whether the messages are coming
from one sender or from many senders, from the viewpoint of the recaiving
Secretary the only difference is the frequency of the incoming messages.
This is because each communication socket has an independently threaded
Connection class, which cdls the Secretary when it has received a
message. For these tests the role of the COMRIS agent has been replaced
by atest agent to replicate al the typica functions of an agent.

To prove that one solution makes the syslem more scaable than the other
solution, it is necessary to amulate a redigic behaviour. The only way to
do this, is to use random factors, which means that the whole test is based
on random parameters. Of course, there are some datic conditions like
number of agents or number of sent out messages, but settings like which
agent is in which secretary pool or which agent is doing a peer-to-peer
connection are random. With random varigbles it is essentid to repeat the
tests more than one time. With enough repetitions it is possble to get a
good average of testing results.

The tests were ran on equivdent machines with 128Mbyte RAM,
500 MHz processor and 100 MBit Network card on a network with the
same speed. On the machines was installed Windows 2000 and Java 1.2.2.

48

The following test pattern was used to compare the different COMRIS
versons.

Start Kernel
Start Secretary Pool 1 to xxx
for SP1 to SPxxx
create yyy Agents
save time (start time)

for SP1 only
create Subspace 1 to www

for SP1 to SPxxx
for Subspace 1 to www
create random number R1
for R1
select random agent R2
joinwith R2 in Subspace
save time (time to join in a subspace)
for zzz number of messages
select random agent A1 (from own SP)
select random agent A2 form entity-ligt

send message from A1to A2
save time (time to send zzz messages)

this are the variable parameters.
www — number of subspaces
XXX — number of secretary pools

yyy — number of agents per secretary pool
zzz — number of messages

All tests were repegated five times, to get a rough average. In summery, the
tests have resulted in thousands of measured vaues (ca 25000 results).
Each test needed synchronisation between the secretary pools and the
kerndl, because it was important that each test was started and stopped at
the same time. Furthermore, each test needed a long execution time (more
than 36h), due to the different parameters and recurrences. With the
identicdl hardware and a fast network it is possible to disregard the

49

influence of the physica network and hardware. Performance tests with
low speed machines (166 MHz) incressed the time per measuring by a
factor of four, but the generd difference between the different

infrastructures versions was the same as before.

4.6 Resultsof Experiments

4.6.1 Registration Performance

An earlier test was trying to show the regidration time for severd agents.
The tegt in this document could confirm these results. Figure 4-6 shows the
time taken for up to fifty thousand registrations from one Secretary Pool to
the Kerndl. Both the Kernd and Secretary Pool are running on the same
machine (Windows 2000). As the number of regidrations increases so the

processing of these requests dows down, thisis quantified in Figure 4-7.

Secretary Pool Registration Performance Secretary Pool Registration Performance

Time in sec
N N w
o a1 o
o o o

[
o
o

Registrations per Second
=
a1
o

1001 50
0 T T T T 0+ T T T T
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
Number of Registrations Number of Registrations
Figure 4-6 Secretary Pool registration Figure 4-7 Number of registrations per
times second

In the results the regidrations take increasingly longer time beyond one

thousand regidrations. As long as regidration is reliable when overworked

50

20000
10000

messages

which the results prove as no regidrations failed, then such behaviour is
acceptable. A perfectly scalable system would produce a horizonta line.

4.6.2 Test direct connections
To prove that direct connection can disburden the kernd, it was necessary
to test an infragtructure verson with and without implemented direct

connections.

time in sec time in sec

20000
10000
5000
1000

5000
1000

messages

1500
300

30 30
agents agents

Figure 4-8 using direct connections Figure 4-9 no direct connections

Figure 4-8 shows the time to send 100 to 20000 messages between 30 to
3000 agents, usng direct connections. In comparison with Figure 4-9,
which is usng the dd COMRIS verson without direct connections, it
needs 2 Yess time to send 20000 messages between 3000 agents. In the

Figures it is good to see the influence of the number of messages. A smadl
amount of traffic does not need so much capacity from the kernel and so
there is no big difference between both versons. In contrast, a high leve of
traffic needs too much capacity from the kernel and it is not able to forward
al messages fast enough.

51

4.6.3 Test address multicast

The implementation of the address multicast was not so complicated, but
the influence to the effidency and scdability is very high. Fgure 4-10
shows the curves of an infrasructure verson with and without address
multicast over the subspaces.

400,0

350,0

300,0

250,0

time in sec
N
o
o
o

150,0

100,0 /
50,0 /
0,0 <. T T T

0 500 1000 1500 2000 2500 3000 3500
agents

|+using address multicast without address multicast

Figure 4-10 influence of address multicast

It is easy to see that the old version increases fagter than the new version
and the time to send the multicast message is less than a 1/3 of sending
unicast messages to each subspace member.

4.6.4 Test special name concept

The specid name concept should reduce the check-ups to find exising
direct connections between secretary pools. Figure 4-11 to Figure 4-14
shows the influence of this concept for three and for five secretary pools.

52

20000

5000

messages

20000

messages

time in sec

20000

messages

3000

300 1500
30
agents

Figure 4-11 using name concept with 3 SPs

time in sec

5000
messages

2500

100 500

agents

Figure 4-13 using name concept with 5 SPs

5000

20000

time in sec

3000

300 1500
30
agents

Figure 4-12 no name concept with 3 SPs

’-700,0

-600,0

-500,0

-400,0
time in sec
300,0

-200,0

5000

2500

100 500

agents

Figure 4-14 no name concept with 5 SPs

The influence of usng the name concept in Figure 4-13 is higher then in
Figure 4-11. The reason for this behaviour lies in the number of secretary

pools. More secretary pools mean more connections between them and this

improves the search effects of this concept.

The efficiency of this concept is not as high as the direct connections. One
reason is that this is not the ided implementation (the verson which is
usng the name for the secretary pool number), but aso that this concept
needs more memory to save the additiona informetion.

53

20000

messages

4.6.5 Test number of applications per machine

Another interesting question was the influence of the java virtud machine
(VM) to the performance. Is it useful to start more than one secretary pool
on the same machine, only to separate different interest groups or smilar
things? The answer is, no. Each secretary pool has its own VM and using
more than one secretary pool takes more memory and processng time
from the machine. A solution is to alow to more than one secretary pool
with the same VM (it is to implement in the source code of the secretary
pool). However, why should it be useful? For example, two secretary pools
need two separate ertity-lists, more memory and more processor time than
one pool with the same number of agents. Figure 4-15 and Figure 4-16
show the difference between one and two secretary pools on a machine
with the same number of agents.

[600,0 ’-600,0

500,0 500,0

-400,0 400,0

+300,0 time in sec

2000 200,0

-100,0 20000 - 100,0

5000
o 5000
00 messages 0,0

3000

100 300 1500

30 30

300
agents agents

Figure 4-15 running 1 SP per machines Figure 4-16 running 2 SPs per machines

46.6 Summery tests

A number of obsarvations and interpretations can be made from these
graphs. Regidration of smal amounts of agents is fast. Scaing up to a
larger number of agents and aso messages shows dragtic increase in time,
Alo the differet kind of improvements make the communication

54

F300,0 timeinsec

infrastructure more scaable and let the sar network work wel until there

are more then 5000 agents (which is enough for a conference with 1000

members).

1400,0

s(l4oo,o

\-1200,0
\-1000,0
-800,0

time in sec
-600,0

-400,0

1200,0

-1000,0

800,0

time in sec

-600,0

11400,0
20000
1-200,0 10000
5000 5000
messages 1000 0,0 messages 1000 {0,0

3000 00 3000
100 300 1500 1 300

30 30

agents agents

20000

10000 -200.0

1500

Figure 4-17 origind COMRIS version Figure 4-18 COMRIS version with all updates

The key quegtion &fter dl improvements is dways “Was it useful?'.
Figure 4-17 and Figure 4-18 shows the difference between the origind and
the last updated COMRIS verson. It is clear to see the new version is 2 %2
faster than the origind. Noticegble is that the trend is obvioudy lower,

which means that the load does not increase so fadt.

The kernd requires enough memory to keep a direct connection to every
scretary in the infrastructure. Whilst the infrastructure represents a
centrdised moded this is an important condderation, even though the
secretaries are farly independent of the kernd once direct connections are
edablished. If such connection fals or if secretaries are dlowed a
maximum number of direct connections to free up ther machin€s
resources, then the kernd will il be required. Maybe the connection to
the kerne could be an intermittent one, turned off when not required,

freeing up the kerndl’ sresources.

55

The charts do not show a nice linear or exponentid curve. This is caused
by two main factors. Fird, the fact that the curve is a result of more than
one (kernel and secretary pools) separated java virtud machine (VM)
processes on top of Windows NT, which is not a real-time system and has
to divide and schedule its resources with other applications. In addition, the
VM can garbage collection cdls enter into a memory during execution of
the test. Second, and more important, is the fact that the implementations
are thread based. This means that in some cases a large number of threads
(the gpplication itsAf, direct connection, etc.) can have to perform a lot of
pre processing but are only able to produce their output result at the next

activaion cycle.

56

Chapter 5

5 Conclusion

5.1 Achieved status

The biggest problem on this work was the time, due to the knowledge that
the COMRIS project is near the end it is difficult to make dementary
changes. Nevertheless, appropriate work was done and the scalability of
the COMRIS communiceation infrastructure was increased.

The address multicast is noticegble right at the start of the infrastructure,
thereby the whole regigtration process in the subspaces and publish groups
is faster (see 4.6.3). The direct connections are perceivable, especidly in
the running system, because the messages find the specified degtination
without any detours. The third implemented idea, the specid name concept
is only useful for bigger infrastructures with many secretary pools and due
to the shortened implementation, not so effective. The kernd tsdf is now
able to handle a dgnificantly higher load than a the beginning of this
work. Therewith the whole system is able to handle higher load and the
message delay timeis reduced.

Altogether, the scdability of the communication infragtructure was
increased by a factor of two and a hdf to three. There were dso some
methods implemented, which are necessary for the visudisation tool [10].
The test process discovered some erors a the programming of the

infragtructure (some functions were used twice), which were removed
immediady.

57

5.2 Commendation

Over time, it showed that some ideas are useful and some are not so useful

for such an agent system. Therefore, it is adverse to use bus or tree
topologies. They have a potentid bottleneck and they have some
implementation problems. At the end it aways depends on the sze of the
agent system. For example, a smal conference with 100 — 1000 members
is not a problem for the gtar topology, especialy not with some additiona

concepts like the direct connection and the address multicast. Should it be a
bigger conference, it is necessary to have a more flexible infrastructure. In
the star network the centrd node is aways the bottleneck and, in addition,
direct connections are not endlesdy useful. Each direct connection takes
the same memory and it needs time to search an exigting direct connection.
Thus it is better to use a more decentralized architecture, like the ring or the
hypercube.

The work on the infrastructure has shown that it is easy to say “we enhance
the scdability”, but it is difficult to redise this am. How scdable an
infrastructure can be is decided in the design and with the specification. It
is dways difficult to implement changes in a sophisticated sadium.
Another important concluson is that not only the look of the infrastructure
can enhance the scaahility. This means tha the complete system has to be
well balanced. In addition to the infragtructure it is aso important that, for
example, the agents use techniques to reduce the traffic. So it is perhaps
posshle to implement message-filter dgorithms to make the O(r?)
transport problem to a O(n) transport problem.

58

5.3 Pergpective

With the end of this work, the COMRIS project has dready finished. Thus
there is no further work to do in direct connectivity to COMRIS. However,
there are some ideas that can be prosecuted in additiond <udies. This
document tries to show the different design posshilities for the COMRIS
infrastructure. Further work could try to test the different topologies and to
prove that a hypercube is more sca able than a star or aring.

Another concept, which was not described in this work, is load baancing
for digributed architecture [16]. Load bdancing collects system date
information and assgns or redidributes the gpplication tasks among the
processors of a pardld computing sysem in order to maximise overal
throughput and stabilise response times. However, it could be used dso to
assigns the traffic of a communication infrastructure like COMRIS. This
can be peformed ether by a centra component supervisng the entire
system, by cooperating pre-processor load balancing agents or by
cooperation of load baancing agents, each of them controlling a part of the

processing system.

It is dso imaginable that the traffic through the infrastructure is finding its
way with a specid routing strategy. For example, if a connection between
two secretary pools overloaded, it needs more time for sending a message
between two agents in this pools. A specid dgorithm could andyse the
traffic and could bypass new messages over another path. This path maybe
longer, but free and thus the message can reach the destination earlier.

59

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

BIBLIOGRAPHY

“ Computer Networks: A system approach”, Larry L. Peterson &
Bruce S. Davie; 600 pages 2nd Ed (1 November, 1999) Morgan
Kaufmann, ISBN: 1558605770

“COMRIS: Virtual space definition and implementation plan”,
unpublished internd document

Salab (Belgium) checked 21.03.2001
http://comris.starlab.org/
Webopedia checked 21.03.2001

http://webopedia.internet.com/TERM/g'sca able.html

Computationd Science Education Project;
http://csepl.phy.ornl.gov/csep.html checked 21.03.2001

“ Reliable broadcast in hypercube computers’ , P. Ramanathan
and K. G. Shin; IEEE Trans. Comput., vol. C-37, no. 12, pp.
1654-1656, Dec. 1988.

“ Optimum broadcasting and personalized communications in
hypercubes’, S. L. Johnson and C. T. Ho; |EEE Trans. Compti.,
vol. C-38, no. 9, pp. 1249-1268, Sept. 1989.

“RING: A Client-Server System for Multi-User Virtual
Environments” , Thomas A. Funkhouser; Proceedings of the
1995 symposium on Interactive 3D graphics, 1995, Page 85

“ High Performance Infrastructure for Visually-intensive CSCW
Applications’ , Stephen Zabele, Steven L. Rohdl and Raph L.
Vinciguerra; Proceedings of the conference on Computer

supported cooperative work, 1994, Pages 395 - 403

“Virtual Reality Visualization of a Communication
Infrastructure and Large Scale Agent Interaction” , Robin Wolff
unpublished Dissertation, Jan 2001

“ Rendezvous: An Architecture for Synchronous Multiuser
Applications’ , John F. Patterson, Ralph D. Hill, Steven L.
Rohall and Scott W. Meeks, Proceedings of the conference on
Computer-supported cooperative work, 1990, Pages 317 - 328

60

[12]

[13]

[14]

[19]

[16]

[17]

“ The Rendezvous Language Architecture”’ , Rdph D. Hill, Tom
Brinck, John F. Patterson, Steven L. Rohdl and Wayne T.
Wilner; Commun. ACM 36, 1 (Jan. 1993), Pages 63 - 67

“The Abstraction-link View Paradigm, Using Constraints to
Connect User Interfacesto Applications’, Rdph D. Hill;
Conference proceedings on Human factors in computing
systems, 1992, Pages 335 - 342

“ A Collaborative Medium for the Support of Conversational
Props’, Tom Brinck and Louis M. Gomez; Conference
proceedings on Computer-supported cooperative work, 1992,
Pages 171 - 178

“MMConfi An Infrastructure For Building Multimedia
Applications’ , Terrence Crowley, Paul Milazzo, Ellie Baker,
Harry Forsdick and Raymond Tomlinson; Proceedings of the
conference on Computer-supported cooperative work, 1990,
Pages 329 - 342

“ Scalability and Potential for Optimization in Dynamic Load
Balancing - Centralized and Distributed Sructures’ , Wolfgang
Becker; http:/Aww.informeatik.uni- stuttgart.de/cqi-
bin/makehtml-ncstrl.cgi Zdocument=TR-1992-01

checked 21.03.2001

“ Distributed Peer-to-Peer Control for Harness’ , Chrigtian
Engelmann, unpublished Dissertation, Jan 2001

61

Declaration of authorship

| hereby declare that this submission is my own work and that, to the best
of my knowledge and bdief, it contains no materid previoudy published
or written by another person nor materid which to a subgtantia extent has
been accepted for the award of any other degree or diploma of the
university, except where due acknowledgement has been made in the text.

Erklérung zur Urheber schaft

Ich versichere hiermit, dass ich die vorliegende Arbeit sdbstdndig und nur
unter Verwendung der angegebenen Literatur bzw. Hilfsmittd ohne
fremde Hilfe angefertigt habe.

Die Arbait wurde bisher in glecher oder &hnlicher Form kener anderen
Prifungsbentrde vorgelegt.

Reading (UK), den 27.Mé&rz 2001

(Oliver Otto)

