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ABSTRACT 

The dramatic improvements in global interconnectivity due to intranets, 

extranets, and the Internet has led to an explosion in the number and 

variety of new data-intensive applications. One of these applications are 

virtual reality systems, with their virtual environments. Current research in 

large-scale virtual environments can link hundreds of people and artificial 

agents with interactive three-dimensional (3D) graphics, massive terrain 

databases, global hypermedia and scientific datasets. One of these research 

projects is the Co-Habited Mixed Reality Information Spaces (COMRIS). 

A variety of network elements is required to scale up this virtual 

environment to an arbitrarily large size and simultaneously connecting 

thousands of interacting agents. The goal of this work is to show which 

elements can be used to enhance the scalability of the communication 

infrastructure. It is showing a generic overview of different design 

possibilities like the ring or the hypercube topology. 
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GLOSSARY 

Address A name or token that identifies a network 
component. In local area networks (LANs), for 
example, every node has a unique address. 

Agent Autonomous Software which is searching and 
summarize information to send it in the real world 

Broadcast One-to-all, unreliable communication 

Conference Center The controlling central entity of the COMRIS 
system that manages global conference information 
including registration 

Degree The degree of a node is defined to be the number of 
its neighbours 

Diameter The longest path between any two nodes 

Entity A client of the infrastructure (For example an agent, 
a database or a text generation system 

Links A connection between nodes 

Multicast One-to-many, unreliable communication 

Node In networks, a processing location. A node can be a 
computer or some other device, such as a printer. 
Every node has a unique network address  

Port In TCP/IP and UDP networks, an endpoint to a 
logical connection. The port number identifies what 
type of port it is. 

Publish Group Abstraction of multicast group where only the 
creator is allowed send messages and add members 
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Scalability  Refers to how much a system can be expanded. 
Capable of being changed in size and configuration. 
The term by itself implies a positive capability. For 
example, "the device is known for its scalability" 
means it can be made to serve a larger number of 
users without breaking down or requiring major 
changes in procedure 

Secretary Interface between agent and infrastructure 

Secretary Pool Interface for a pool of agents and the infrastructure 

Socket  The mechanism for creating a virtual connection 
between processes 

Subspace A region of the virtual space, with given properties 
and functionality to aid group interaction between 
agent interaction. 

Unicast One-to-one, reliable communication 

Virtual Space The space through which agents meet and interact 
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C h a p t e r  1  

1 Introduction 

1.1 Overview 

The dramatic improvements in global interconnectivity due to intranets, 

extranets, and the Internet has led to an explosion in the number and 

variety of new data-intensive applications. One of these applications are 

virtual reality systems, with their virtual environments. Current research in 

large-scale virtual environments can link hundreds of people and artificial 

agents with interactive three-dimensional (3D) graphics, massive terrain 

databases, global hypermedia and scientific datasets. One of these research 

projects is the Co-Habited Mixed Reality Information Spaces (COMRIS). 

The COMRIS project aims to develop, demonstrate and experimentally 

evaluate a scalable approach to integrating the Inhabited Information 

Spaces schema with a concept of software agents. The COMRIS vision of 

co-habited mixed-reality information spaces emphasizes the co-habitation 

of software and human agents in a pair of loosely coupled spaces, a virtual 

and a real one. However, this project does not pursue the perceptual 

integration of real and virtual space into an augmented reality. Instead, the 

coupling aims at focusing the large potential for useful social interactions 

in each of the spaces, so that they become more manageable, goal-directed 

and effective. 

The COMRIS project uses the conference center as the thematic space and 

concrete context of work. The conference center is a structure of places for 

registration, presentation, refreshment, and so on. At a conference, people 

gather to show their results, see other interesting things, find interesting 

people, meet officials in person, or engage in any kind of discussion. The 

possibilities of interaction at such an event are enormous, it is very 
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information-intensive, and the great diversity of topics and purposes that 

are being addressed make it difficult to get everything done.  

 
In the mixed-reality conference center, real and virtual conference 

activities are going on in parallel (as presented in Figure 1-1). Each 

participant wears its personal assistant (PA), an electronic badge and 

earphone device, wirelessly hooked into an Intranet. This personal assistant 

– the COMRIS parrot - realizes a bi-directional link between the real and 

virtual spaces. It observes what is going on around its host (whereabouts, 

activities, other people around), and it informs its host about potentially 

useful encounters, ongoing demonstrations that may be worthwhile 

attending, and so on. Several personal representatives (PRA), the software 

agents that participate on behalf of a real person in the virtual conference, 

gather this information. Each of these has the purpose to represent, defend 

and further a particular interest or objective of the real participant, 

including those interests that this participant is not explicitly attending [3]. 

To accomplish this task it is necessary that each agent communicate with 

the other agents in the virtual space. For this purpose, the agents send 

unicast messages (a point-to-point connection). Each agent can only 

 
Figure 1-1 COMRIS overview 
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communicate with known agents, which they acquaint in special interest 

groups (also called subspaces). Such a subspace (which is centrally 

managed) is combing agents with a familiar topic and a place to get the 

name of other agents. Subspaces are like a chat room on the Internet, 

everyone can join, leave, listen and speak. In contrast to the subspaces 

exists publish groups. They are like a radio channel, everyone can listen 

but only one agent can send (the owner of this group). 

 
Over these places in the virtual world, it is possible to find people in the 

real world with similar interests and to make real conversation (as 

presented in Figure 1-2). 

 

1.2 Conceptual formulation 

A variety of network elements are required to scale up virtual 

environments (VEs) to arbitrarily large sizes, simultaneously connecting 

thousands of interacting agents and all kinds of information objects. VE 

construction can include concepts and components from nearly any subject 

 
Figure 1-2  The Virtal world of COMRIS 
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area. The variety of desired connections between people and agents can be 

summarized by the slogan “connecting everyone to everyone”. As diversity 

and detail of virtual environments increase without bound, network 

requirements become the primary bottleneck. 

The virtual space is the environment through which COMRIS agents will 

communicate and function. The virtual space is not only a conceptual 

home to hundreds or even thousands of agents, but also to other 

components with which these agents communicate. All such components 

and agents are termed entities and communicate via the virtual space 

communication infrastructure. 

If n agents work in the virtual space and each agent sent each other agent 

one message, then n*(n-1) messages are generated to transmit over the 

infrastructure. For example, a conference with 100 members (per member 

exists 5 interest based agents) can generate 250.000 messages and a 

conference with 1000 members can generate 25 million messages [8]. This 

O(n²) transport problem needs a very scalable infrastructure to transmit all 

these messages with a small delay. Within the context of COMRIS, 

scalability concerns the ability to increase the number of users and agents 

without degrading the usability of the system [2] [9]. 

This work is trying to show ways to enhance the scalability of the current 

COMRIS infrastructure. It is discussing over theoretical possibilities and 

implementing some of then. The COMRIS Project started in 1998 and will 

finish in December 2000. Due to this condition, this work is trying to 

implement some changes to enhance the scalability and is talking about 

alternatives for projects with similar facts. The tests in chapter 4 show the 

effect of a small change on the whole infrastructure. 
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1.3 Organization of this thesis 

This thesis is organised as follows: 

- a short overview of COMRIS 

- a conceptual formulation of my work 

- what is scalability and why is it useful 

- an overview about the conditions for a system like COMRIS 

- a short brief introduction to addressing and routing (to understand 
the later sections) 

- an overview about different kind of topologies and their influence 
on COMRIS 

- further possibilities to enhance the scalability (direct connection, 
address multicast, etc.) 

- analysis of some implementations (direct connection, address 
multicast, special name concept) 

- conclusion 
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C h a p t e r  2  

2 Problems of network scalability 

2.1 What is scalability? 

Scalability is a popular buzzword that refers to how well a hardware or 

software system can adapt to increased demands. For example, a scalable 

network system would be one that can start with just a few nodes but can 

easily expand to thousands of nodes. Scalability can be a very important 

feature because it means that you can invest in a system with confidence 

you won't outgrow it.1 

 

2.2 Conditions for a large scale virtual and agent environment 

Each system has conditions, which describe the behaviour and the 

restrictions for the system. The following section defines and identifies the 

required specification, which is needed by the communication 

infrastructure of a virtual environment like COMRIS. It focuses on the 

communication architecture and on different technical aspects that play a 

role in the implementation of the virtual space of COMRIS [2]. 

2.2.1 General Architecture 

The communication infrastructure provides support for dialogue between 

agents. An Agent interface to the infrastructure exists through secretaries 

and an individual secretary supports each agent. Both the implementation 

of the infrastructure and the location of peers are invisible to agents. In 

order to communicate to a peer or group of peers, an agent simply passes a 

message to the secretary.  

                                                 
1 http://webopedia.internet.com/TERM/s/scalable.html 
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An overview of the infrastructure is presented in Figure 2-1, shown from 

the perspective of the Infrastructure Developer. 

 

The sequential initialisation of the infrastructure (in terms of 

communications from new agents), different type of communications 

services available from the infrastructure, is outlined in Figure 2-2. 

 

The numbers in parenthesis indicate the logical sequence of messages and 

the subscript indicates the type of communications, where U indicates 

unreliable communications protocol (Multicast), while T denotes a reliable 

communications protocol (TCP). The sequence is as follows: 

 

Secretary
Pool

Secretary
Pool

S
ecretary

System Kernel

Infrastructure

Agent Agent Agent Agent Agent

Conference
Centre (CC)

PRA

PRA

PRA

PRA = Personal
Representative Agent

 
Figure 2-1 COMRIS infrastructure 

Secretary
Pool

Secretary
Pool

S
ecretary

System Kernel

Infrastructure

Agent Agent Agent Agent Agent

Conference
Centre (CC)

PRA

PRA

PRA

PRA = Personal
Representative Agent

(i)
T

(ii)
T

(i)
T

(ii)
T

(v) T
(v)

T

(iii)
T (iv) U

 
Figure 2-2 Secretary communication within the infrastructure 
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(i) An agent communicates with kernel to register 

(ii)  The kernel accepts the registration. 
(iii)  An agent joins in a subspace via the central kernel. 

(iv) The infrastructure sends a message to all member of the subspace, 
with the information about the new agent. 

(v) Subsequent messages requiring reliable communications are sent 
via the central server or direct connections. 

 

 

2.2.2 Subspaces 

Subspaces represent (possibly overlapping) interest-based regions of the 

virtual space. A subspace may be thought of as a message forwarding 

service for groups of agents with a common interest. An agent may 

communicate to one or, sequentially, to all other members of a subgroup to 

which it belongs. 

2.2.3 Publish groups 

A publish group supports unidirectional one-to-many communication and 

is analogous to a mail distribution service. In contrast to Subspaces (to 

which an agent may request to join and leave, see below) membership of a 

Publish Group is under the direct and sole control of the creator agent. 

2.2.4 Communication across the infrastructure 

The infrastructure only supports the reliability of communication between 

secretaries. The secretary is not responsible for whether or not the agent 

actually reads or processes the message.  

One-to-one communication between secretaries is based on TCP streams 

and may thus be considered reliable. Guaranteeing the reliability of one-to-

many communication can have implications on timeliness, scalability and 

error recovery. For this reason reliable one-to-many communication is 

provided as an option that may be selected by the creator of the group. 

Both Subspaces and Publish groups will be given this facility. 
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2.2.5 Communication related requirements 

Communication - Agents must be able to communicate with each other. 

Point to point messaging is a requirement. The Personal Agents are able to 

uniquely identify the senders and receivers of messages. 

Communication reliability - When an agent receives a message it must 

also process the message. The agent is not obliged to really act according 

to the instruction in the message. It may decide not to perform what is 

stated in the message, but the agent may not simply dump or ignore the 

message before parsing it. This shall result in a non-repudiation 

communication where an agent can not falsely deny that it ever received 

the message. 

2.2.6 Agent specific related requirements 

The following requirements are described from the perspective of the 

communication infrastructure. 

Identification – It must be possible to uniquely identify each agent. 

Personal Agents must have a unique ID (e.g. name). This uniqueness of 

this name is managed by the virtual space (i.e. the Agent Management 

System where agents can register themselves)  

Autonomous  – Personal Agents must be able to reason about their own 

state and act according to it. The internal state of the agent is not only 

changed through environmental stimuli, i.e. input and outputs, but also 

through internal processes. 

Scalability – The agent performance may not drop unacceptably, if the 

number of competing personal representation agents grows. The personal 

agent must efficiently handle the management and communication 
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2.3 Why do we need network scalability? 

 
A network must provide connectivity among a set of computers. 

Sometimes it is enough to build a limited network that connects only a few 

select machines. In fact, for reasons of privacy and security, many private 

(corporate) networks have the explicit goal of limiting the set of machines 

that are connected. In contrast, other networks (of which the Internet is the 

prime example) are designed to grow in a way that allows them the 

potential to connect all the computers in the world. A system that is 

designed to support growth to an arbitrarily large size is said to be scalable 

[1].  

 
Network connectivity occurs at many different levels. At the lowest level, a 

network can consist of two or more computers directly connected by some 

physical medium, such as a coaxial cable or an optical fiber. Such a 

physical medium is called a link or connection and the computers that are 

connected through such a link, are called nodes. As illustrated in Figure 

2-3, physical links are sometimes limited to a pair of nodes (such a link is 

said to be point-to-point), while in other cases, more than two nodes may 

share a single physical connection (such a connection is said to be 

multiple-access). Whether a given connection supports point-to-point or 

multiple-access connectivity depends on how the node is attached to the 

connection. It is also the case that multiple-access connection are often 

limited in size, in terms of both the geographical distance they can cover 

and the number of nodes they can connect. In the COMRIS project, the 

a)

b)

 
Figure 2-3 Direct links: a) point-to-point; b) multiple access 



 

 11

links are not physical connections, they are logical links, but they have the 

same interpretation as the application layer (see Figure 2-4). This layer is 

represented by the user interface, agent intelligence, and so on. In contrast 

to physical networks (which are to find on IP Level 1 to 3), the COMRIS 

communication infrastructure is resided on IP Level 4. However, this is not 

a reason not to use physical network designs for a logical infrastructure. 

 
A network with nodes can be described by two properties. Two nodes are 

neighbours if there is a link connecting them. The degree of a node is 

defined to be the number of its neighbours. A high degree means that a 

node has many direct connections to other nodes. For example, in Figure 

2-3a the degree is 1 and in Figure 2-3b the degree is n (number of nodes on 

the bus). The diameter of a network is the longest path between any two 

nodes. A small diameter is preferable, because it decreases the delay of a 

message through the infrastructure. In Figure 2-3 both examples have a 

 

Application

Presentation

Session

Transport

Network

Data link

Physical

Data link

Internet

Transport

Process /
Application

OSI IP

 
Figure 2-4 Correspondence between OSI and IP protocol layer model 

Applications invoke TCP/IP services, sending and 
receiving messages or streams with other hosts. 
Delivery can be intermittent or continuous. The 
COMRIS infrastructure is resided in this layer. 

Provides host -host packetized communication 
between applications, using either reliable delivery 
connection-oriented TCP or unreliable delivery 
connectionless UDP. Exchanges packets end-end with 
hosts.  

Encapsulates packets with IP datagram which 
contains routing information, receive or ignores 
incoming datagrams as appropriate from other hosts. 
Checks datagram validity, handles network error and 
control messages.  

Includes physical media signalling and lowest level 
hardware functions, exchanges network-specific data 
frames with other devices. Includes capability to 
screen multicast packets by port number at the 
hardware level. 
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diameter of 1. These properties are useful to recognise the scalability of a 

communication infrastructure. 

If computer networks were limited to situations in which all nodes are 

directly connected to each other over a common physical medium, then 

networks would be very limited in the number of computers they could 

connect. On the other hand, the number of wires coming out of the back of 

each node would quickly become both unmanageable and very expensive. 

For a more logical environment, like the COMRIS infrastructure, is it 

meaning, that there are more open socket connections between the nodes 

and that needs more memory (which is not endless available). Fortunately, 

connectivity between two nodes does not necessarily imply a direct 

physical connection between them. Indirect connectivity may be achieved 

among a set of cooperating nodes. Consider the following two examples of 

how a collection of computer can be indirectly connected. 

 
Figure 2-5 shows a set of nodes, each of which is attached to one or more 

point-to-point links. Those nodes that are attached to at least two 

connections run software that forwards data received on one link out on 

another. If organized in a symmetric way, these forwarding nodes form a 

switched network. There are numerous types of switched networks, of 

which the most common are packet-switched and circuit-switched. The 

 
Figure 2-5 Switched network 
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important feature of packet-switched networks is that the nodes in such a 

network send discrete blocks of data to each other. Think of these blocks of 

data as corresponding to some piece of application data such as a file, a 

piece of email, or an image. Each block of data is called either a packet or a 

message. 

Packet-switched networks typically use a strategy called store-and-

forward. As the name suggests, each node in a store-and-forward network 

first receives a complete packet over some link, stores the packet in its 

internal memory, and then forwards the complete packet to the next node. 

In contrast, a circuit-switched network first establishes a dedicated circuit 

across a sequence of links and then allows the source node to send a stream 

of bits across this circuit to a destination node. The major reason for using 

packet switching rather than circuit switching in a computer network is 

efficiency. 

The cloud in Figure 2-5 distinguishes between the node on the inside that 

implement the network (they are commonly called switches, and their sole 

function is to store and forward packets) and the nodes on the outside of 

the cloud that use the network (they are commonly called hosts, and they 

support users and run application programs). In general, this document 

uses a cloud to denote any type of network, whether it is a single point-to-

point link, a multiple-access link or a switched network. 
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A second way in which a set of computers can be indirectly connected is 

shown in Figure 2-6. In this situation, sets of independent networks 

(clouds) are interconnected to form an internet work or Internet for short. A 

node that is connected to two or more networks is commonly called a 

router or gateway and it plays much the same role as a switch. It forwards 

messages from one network to another. Note that an internet can itself be 

viewed as another kind of network, which means that an internet can be 

build from an interconnection clouds to form lager clouds. Router, 

gateways and switches are terms from physical networks. The COMRIS 

infrastructure takes over this part of the kernel, but the rule is the same. 

Just because sets of hosts are directly or indirectly connected to each other 

does not mean that we have succeeded in providing host-to-host 

connectivity. The final requirement is that each node must be able to say 

which of the other nodes on the network it wants to communicate with. 

This is done by assigning an address to each node. An address is a byte 

string that identifies a node. The network can use a node’s address to 

distinguish it from the other nodes connected to the network. When a 

source node wants the network to deliver a message to a certain destination 

node, it specifies the address of the destination node. If the sending and 

receiving nodes are not directly connected, then the switches and routers of 

the network use this address to decide how to forward the message toward 

 
Figure 2-6 Interconnections of networks 
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the destination. The process of determining systematically how to forward 

the message toward the destination node based on its address is called 

routing. 

This brief introduction to addressing and routing has presumed that the 

source node wants to send a message to a single destination node (unicast). 

While this is the most common scenario, it is also possible that the source 

node might want to broadcast a message to all the nodes on the network. 

Or a source node might want to send a message to some subset of the other 

nodes, but not all of them, a situation called multicast. Thus, in addition to 

node-specific address, another requirement of a network is that it supports 

multicast and broadcast addresses [1]. This is used in the publish groups 

and subspaces, which are explained at section 2.2.2 and 2.2.3. The nodes 

can be agents, secretaries or kernels in the COMRIS project and the 

address is the name of an agent. It is not necessary for an agent to know the 

path (routing way) in the infrastructure, only the receiver name is important 

(as described in section 2.2.1). The infrastructure is searching for the 

shortest path to transmit the message. Nevertheless, for the infrastructure 

design it is important to think about the routing path. Chapter 3.1 describes 

different possibilities to keep this path as small as possible.  
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C h a p t e r  3  

3 Possibilities to enhance the scalability 

With a look at the specification of COMRIS (see section 2.2), we can 

imagine that a scalable system has to handle thousands or millions of 

messages, because each agent has to be able to communicate with each 

other agent. Also it is necessary to have a central point for the name 

management, only with such a point it is possible to uniquely identify the 

agent. Consider the following two examples of what situations the 

infrastructure has to handle in the real system. 

 

Figure 3-1 shows two users, which try to login to the VR space at the same 

time and with the same name. If we look to the COMRIS specification, we 

can see that this situation is not allowed, which means that one user should 

get an error message and this user has to try again with another name. 

COMRIS
VR space

user 1

user 2

Terminal

Terminal

try login
with name

"ABC"

try login
with name

"ABC"

Agent
"ABC"

Agent
"ABC"

 

Figure 3-1 two user try to login with  the same name 
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The second example is a usual communication between two agents, which 

is shown in Figure 3-2. There are no restrictions, which can cut off a 

connection between any two agents. 

There are different ways to enhance the scalability of a system like 

COMRIS. The following sections describe some ideas, which can be useful 

to make the infrastructure more flexible and faster. 

 

3.1 Different network structure 

The following discussion of the properties of different topologies is based 

on a collection of nodes that communicate via links. These sections speak 

about some ways to distribute the traffic or even to enhance the scalability 

for the nodes. 

3.1.1 Star topology, the current COMRIS topology 

The star topology is a very popular network structure. Most computer 

centers use the star. This topology is based on a central node (sometimes 

called the host) in the “middle” and all other nodes are arranged around 

this central point. The central node may just route all transmissions to their 

respective destinations or also carry out some processing of its own. Data 

is transmitted through the networks by the host calling each node in turn to 

determine if it has any data to transmit. (In some star networks, the 

kernel

secretary pool 2secretary pool 1

Agent1 Agent2

Agent3

secretary pool 3

peer-to-peer communication

peer-to-peer communication
peer-to-peer communication

 
Figure 3-2 peer-to-peer communications between agents 
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transmission is instigated by the individual nodes, which send an interrupt 

to the host to signal that it has data ready to be transmitted). 

 
The degree of such a system is usually one (except the degree of the central 

node, which is depend of the number of nodes) and in addition, the 

diameter is very small with two. If an agent wants to speak with other 

agents, the communication goes through the central node. However, this is 

the bottleneck of this topology. 

In this system, there is no problem with both the examples (see the 

beginning of this chapter). Even with the central node, there exists only one 

entity-list (in this list all agents are registered, with name, address and port 

number) and a double registration with the same name is not possible. The 

star topology is the current COMRIS network structure. 

This topology is very easy to implement with all the COMRIS 

specifications, but unfortunately not very scalable. Chapter 4.6.1 shows the 

speed of the registration of up to 5000 agents and transmitting up to 20000 

messages as soon as possible. In comparison with further methods this 

infrastructure is very slow (which are described in 3.1.5). 

 

 
Figure 3-3 Example for a star topology  

the bottleneck 
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Star advantages:  

- The response time is generally very fast, but this depends mostly 
upon the power of the host. 

- Concurrent processing by the host is possible.  

- Doubtlessly the uniquely identification (because the central node 
has the entire entity-list) 

 

Star disadvantages:  

- If the host fails, the whole network fails.  

- The central node can only handle a certain number of nodes and the 
network cannot be expanded beyond this number (section 4.6.1 
shows some results).  

- As each node has its own communication line, there is a large cost 
in its initial installation.  

- The central node is the bottleneck (entire communication is going 
over this point) 

 

3.1.2 Ring topology, expandable as the star 

Ring networks consist of nodes directly linked to each other by a single 

communication line. Messages travel from node to node around the ring 

until it reaches its correct destination. As with the bus network (described 

in the next section), each node must be capable of recognizing its own 

address to receive a message. If a message is passed to a node, which is not 

the correct destination, the message is transmitted to the next node in the 

ring. 

The ring with a token-based concept 
 
To control access to the line such that two messages are not transmitted 

simultaneously, a method called "token passing" is implemented. A token 

is a frame of bits, which is passed from one node to the next. The token 

may be "empty" or it may contain a message. If an empty token is received 



 

 20

and the node wishes to transmit data, it holds the token and writes into it: 

the destination address, its own address and the message itself. The token is 

then passed onto the next node. As the token is no longer marked as 

"empty", it ensures that nodes cannot transmit messages at the same time. 

When the token is finally passed to the node which has an address 

corresponding to the token's destination address, that node reads the 

message and then marks the token as being read. The token is then passed 

on to the next node and continues to be passed around the ring until it 

completes a full circuit and reaches the node, which originated the 

message. It is only at this point that the message is erased and the token is 

again marked as being "empty". 

A ring of n nodes has a degree of two, because the node is always 

connected with two other nodes. The diameter of a ring grows as more 

nodes are added, so it is n/2 for a bi-directional ring. [5] 

 
The ring with atomic-broadcast concept 
 
If the ring uses a token to synchronize the message transfer in the network, 

there is no problem with the agent registration or with peer-to-peer 

communication. Nevertheless, a disadvantage of the token system is the 

delay-time. A message can only be sent if the node has the token. Another 

 
Figure 3-4 Example for a ring topology  

 

the ring 
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way to use the ring network topology and to be sure that the unique name 

concept of COMRIS is still possible is to use a reliable broadcast [17]. 

The reliable broadcast performs two phases of broadcast communication. 

A node knows that a message is reliably broadcast if the message (phase 1) 

and the related acknowledgment (phase 2) of all nodes are received. The 

atomic broadcast is an extension of the reliable broadcast. An additional 

numbering algorithm and sorting technique are used in the atomic 

broadcast. It ensures a globally unique order of broadcasted messages at all 

nodes, so that each node knows that every node got the message in an 

unique order, i.e. who tried the registration at first, if two secretaries try to 

register the same name. 

The atomic broadcast concept allows communication between nodes 

without waiting for a token, i.e. for forwarding a message. However, it 

allows also the unique name concept for agent and publish group / 

subspace registration. With this concept it is possible to decrease the delay 

for the whole message transfer and thus increase the scalability. 

The ring is a good way to enhance the scalability of the COMRIS 

infrastructure. This topology is easy to implement and much more scalable 

than the star network. Additional nodes can be added without effort and 

these nodes can be used for new secretary pools or kernels (which increase 

the number of members). If a node gets a message from a connected 

secretary or from a neighbour node, then this node has to wait for the 

token. With the token it is possible to send all messages, which arrived 

since the last time the node got the token. To prevent a node from keeping 

a token for a long time (while sending lots of messages) it is useful to use a 

maximum time to hold the token to send or to use instead the atomic 

broadcast concept. However, with the ring it is easy to use more than one 

kernel node or to use a distributed system (see section 3.2). Only the 
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overhead of transmitting a message is higher than the star topology, 

because the message transport needs additional operating cost.  

 

Ring advantages:  

- Very good for a medium number of nodes which require very high 
transmission speeds. 

- Expansion is easily achieved.  

- Unique registration is not a problem, due to using a token or atomic 
broadcast. 

 

 

Ring disadvantages:  

- Transmission delays are long even with light traffic.  

- Each node must be turned on for the network to operate. (Or each 
node's attached network interface must be continually active.)  

- Failure of a single node will halt a unidirectional ring network. 
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3.1.3 Bus topology, an impractical topology 

A bus topology is one in which all devices connect to a common, shared 

connection (sometimes called the backbone). Most bus networks broadcast 

signals in both directions on the backbone connection, enabling all nodes 

to directly receive the signal. Some buses, however, are unidirectional: 

signals travel in only one direction and can reach only downstream 

devices. 

 
Any node can communicate with any other node by broadcasting its 

message on the bus.  All nodes continuously monitor the bus and when a 

message is detected which has the correct address code attached, that node 

acts upon the transmission. (Each node has its own network address.) 

Before any node may transmit a message, it must first "listen" to the bus to 

determine if any other transmissions are currently being broadcast. Once it 

determines that the bus is clear, it commences transmission. This process is 

known as "contention".  

The degree of this network structure is unpredictable, because it depends 

on the number of nodes, which are connected to the bus. On the other side, 

the diameter is one due to all nodes are connected on one link. 

 
Figure 3-5 Example for a bus topology  

the bus is using multicast 
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Due to a missing central node (like in the star network), it is a problem to 

register two agents with the same name. A solution for this problem is to 

specify a node as the registration node (only this node can register an 

agent) or to use a token. With using a token, this structure is no longer a 

bus topology it is a ring topology (discussed in the previous section). 

The bus is unsuitable for the COMRIS infrastructure. Not only is the name 

management difficult. The key problem is the information transmission at 

the bus, every message is broadcast to the other nodes on the bus. This 

creates a huge overhead for each message. For a small system with not 

more then 100 agents and an average of 100 messages per minute, this 

system maybe possible. For example, if we suppose that the broadcast of a 

message needs 10ms, than it needs 1 sec to send 100 messages but 100 sec 

for 10000 messages. However, a huge amount of messages makes the 

whole infrastructure extremely slow. 

Bus advantages:  

- Good for small networks with low traffic. (ie: Data is not 
frequently transmitted by the nodes.)  

- Easy initial installations and easily expanded by adding extra 
nodes.  

- If any one node fails, only the part behind that node is affected.  

 

Bus disadvantages:  

- The response time degrades rapidly as the data transmission load 
increases.  

- Tapping into the bus causes transmission signals to be distorted. 

- Unique registration is not warranted (no central registration). 

- The bus is broadcasting each message and this increase the 
overhead. 

- For logical infrastructures this is not suitable, the bus is more a 
physical topology. 
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3.1.4 Tree topology, not recommendable for COMRIS 

The tree topology is similar to the star. A tree has three different types of 

nodes, namely a root node (or central node), interior node and leaf node, 

each with different degree. Usually, only the leaf node is connected to 

other component of the network (i.e. to the secretaries). 

 
The degree of this network structure is three (for a bi-directional tree) and 

the diameter is 2*log N (where N is the number of nodes). A high diameter 

makes the communication path for a message from one agent to another 

one very long. That means that the delay for a message can be very high.  

The registration example (see beginning of this chapter) can be a problem, 

if the registration is not in the root node. If the registration in the leaf or 

interior node, than is a system needed, which prevents two different nodes 

registering the same name at the same time. Registration should be done in 

the root node, otherwise we might assign two different nodes a unique. 

After a successful registration or deregistration, the root has to send an 

update of the entity-list to all the other nodes. 

 

 

 
Figure 3-6 Example for a tree topology  

the tree 
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A big problem in the tree is to find the direct way to another node of the 

tree. However, this is important to transmit a message or to register / 

deregister an agent. A solution to this problem is to use a special name 

concept for the nodes. Each level of the tree has it own number and in 

addition there exists a consecutive numbering from the left to the right side 

of each level (as presented in Figure 3-7). 

The extension of this tree is only to the right side and downward possible 

(it avoids a conflict with the consecutive numbering). For communication 

between two nodes it is now possible to calculate the path (it is necessary 

to go up or down). Without numbering, it is still possible to send the 

message to the root (which should have all addresses) to forward the 

message. 

Multicast method, which is often used for physical trees, is not useful for 

logical trees as it will create huge amount of traffic over the whole tree. 

That would make the system very busy and decrease the scalability. 

How useful is the tree for the COMRIS infrastructure? This is depending 

on the kind of traffic. The star, bus and ring topology have one thing in 

common, all nodes have contact with each message. The tree has a 

different concept and with a lot of “local” traffic (only over one or two 

nodes) is the tree to prefer. However, systems like COMRIS, which 

generate traffic through the whole infrastructure all the time, has a big 

1.1

2.1

3.1

4.1
4.2

3.2
3.3

3.4

2.2

 
Figure 3-7 consecutive numbering of a tree 
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bottleneck – the root. It is like the star, but the overhead for each message 

is bigger. 

Tree advantages:  

- Expansion is easily achieved by adding extra nodes.  

- The diameter of a tree (2*logN) is smaller then the diameter of a 
ring (N/2) 

 

Tree disadvantages:  

- Transmission delays can be long with a big tree.  

- The network traffic near the root increase with a higher number of 
messages through the network. 

- If any one node fails, the part beyond this node is affected (If the 
root fails, the whole network fails). 

- It is not easy to find a specific node in the tree, it needs a special 
routing algorithm. 

- Unique registration is not warranted, unless the root node is used 
for it. 

 

3.1.5 Hypercube topology, high debatable  

In a highly scalable topology, more nodes can be added without severely 

increasing the amount of logic required to implement the topology and 

without increasing the diameter. Such a topology is the hypercube. A link 

connecting two nodes defines a 1-dimensional “cube”. A square with four 

nodes is a 2-dimensional cube, and a 3D cube has eight nodes. This pattern 

reveals a rule for constructing an n-dimensional cube: begin with an (n-1)-

dimensional cube, make an identical copy, and add links from each node in 

the original to the corresponding node in the copy. Doubling the number of 

nodes in a hypercube increases the degree by only one link per nodes, and 

likewise increases the diameter by only 1 path [1].   
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Communication in a hypercube is based on the binary representation of 

node IDs. The nodes are numbered so that two nodes are adjacent if and 

only if the binary representations of their IDs differ by one bit. For 

example, nodes 0110 and 0100 are immediate neighbours but 0110 and 

0101 are not. An easy way to label nodes is to assign node IDs as the cube 

is constructed. When you copy an (n-1)-dimensional cube, make sure the 

corresponding nodes in the two copies have the same IDs. Then extend all 

the IDs by one bit. Append a 0 to the IDs of nodes in the original cube, and 

append a 1 to the IDs of nodes in the copy.  

 
Node IDs are the basis for a simple algorithm for routing information in a 

hypercube. An n-dimensional cube will have n-bit node IDs. Sending a 

 
Figure 3-8 Exapmle for a hypercube topology  
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Figure 3-9 A 3-dimesional hypercube 

the hypercube 
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message from node A to node B can be done in n cycles, where on each 

cycle a node will either hold a message or forward it along one of its links. 

On cycle i the node that currently holds the message will compare bit i of 

its own ID with bit i of the destination ID. If the bits match, the node holds 

the message. If they don't match, it forwards the message along dimension 

i, where dimension i is the dimension that was added in the ith step of the 

construction of the cube (i.e. it is the same “direction” at all nodes) [5]. 

The hypercube has the problem that a unique registration is only possible 

with a central node (which is not existing in a hypercube). A solution is a 

combination from hypercube and central node. It means that a series of 

nodes assume the central node part. All registrations and deregistration has 

to proceed on this special nodes. To avoid double registrations, it is 

necessary that all these special nodes be connected together, i.e. in a ring 

structure (see section 3.1.2). For the first example (see beginning of this 

chapter) it means that the registration request has to forward to the nearest 

central node, which can execute the request. However, to speed-up this 

procedure it is useful for each node to know the nearest central node. This 

can be achieved by calculating the shortest path to this special node. For 

example, each node has to know the address of these nodes and can 

compute the shortest path, using their own address (using a XOR over both 

addresses).  

Unfortunately, the hypercube is not linear scalable. Each new dimension 

doubles the number of nodes, therefore, it is not possible to add only one 

node. To avoid one sided network load, it is necessary to distribute the load 

over the new nodes. This needs a special algorithm to spread the existing 

infrastructure over the whole hypercube. However, with the knowledge 

about the prospective infrastructure size (i.e. the maximum of conferee) it 

is also possible to start the hypercube with a stable dimension.  
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Broadcasting from Node x in an n dimensional binary hypercube can be 

performed as follows. First, Node x makes n copies of the broadcast traffic 

and forwards it to its n outgoing links. Then, a node receiving broadcast 

traffic on its dimension-k link forwards that traffic to its outgoing links that 

correspond to dimensions 0 through k – 1. Optimal and reliable 

broadcasting algorithms in hypercube can be found in [6] and [7]. 

 

Hypercube advantages:  

- Fault-tolerant  

- Very good for a high number of nodes. 

- The shortest path between any two nodes is the dimension of the 
hypercube. 

- If any one node fails, there are (n-1) paths left. 

 

Hypercube disadvantages:  

- Expansion needs a increasing of the dimension by one and doubles 
the number of nodes. 

- It is only useful for big network structure. 

- Unique registration is not warranted, unless using a special 
registration model. 

- It needs a complex algorithm, to calculate the spreading of the 
network (if there a change to the next dimension). 
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3.1.6 Summary topologies 

The previous sections described some different infrastructures. The word 

‘node’ can be replaced by the word ‘kernel’, if we look at the COMRIS 

project. For this case, all these network structures are a substitution for the 

single kernel from the current existing infrastructure. The decision over the 

correct infrastructure should be chosen at the beginning of such a project. 

Only with the knowledge of the purpose and the specification, is it possible 

to make the correct choice of the kind of topology. This choice has an 

influence on the flexibility and scalability. It is a difficult decision to 

decide which topology is the best for an infrastructure like COMRIS. Only 

the star was implemented in the COMRIS infrastructure. Unfortunately, 

this work is written at the end of the COMRIS project and therefore 

another topology not implementable yet (except the star network). 

However, on the point of this work it is possible to say that the star 

topology is suitable for the COMRIS infrastructure. Until a few thousand 

agents (1000-10000) are connected over the secretaries to the 

infrastructure, the star works well (this is equivalent to a conference with 

1000 members). Everything that is bigger should use another topology, like 

the ring or the hypercube. 

Another desirable property of interconnection networks is node symmetry. 

A node symmetric network has no distinguished node, that is, the “view” 

of the rest of the network is the same from any node. Rings and hypercubes 

are all node symmetric. Trees and stars are not. When a topology is node 

asymmetric, a distinguished node can become a communications 

bottleneck [5]. 

Table 3-1 gives an overview of the different topologies and their assets and 

drawbacks. 
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1) COMRIS Conditions possible or not 
2) n = Number of nodes 
3) only with special concepts 

Table 3-1 complete topology overview 

 Star Ring Bus Tree Hypercube 
Degree for central node  = n-1 

otherwise = 1 
= 2 = n = 3 (for bi-directional) = dimension (x) 

Diameter for central node  d = 1 
otherwise d = 2 

d = n / 2 d = 1 d = 2 * log n d = log2 n   
with n = 2x    2) 

Subspaces 1) yes yes yes yes Yes 
Publish groups 1) yes yes yes yes Yes 
Cross communication 1) yes yes yes yes Yes 
Uniquely identification 1) yes yes not warranted not warranted 3) not warranted 3) 
Scalable 1) limited limited limited limited unlimited 
Advantages 
 

- easy to implement 
- currently COMRIS 
structure 
- a small diameter 
 

- good for medium 
networks 
-expansion is easy 
- identification is 
firmed 
- degree is small 
- 
 

-  a small diameter 
-  easy to initial 
-  
 

- usable for bigger 
networks 
- expansion is easy 
- degree is small 
- 
 

- for unlimited 
networks 
- fault tolerant 
- a small diameter and 
degree, as well for big 
networks 
- 
 

Disadvantages 
 

- central node is the 
bottleneck 
- not unlimited scalable 
- a high degree  
- 
 

- delay longer for big 
networks 
- one node can block 
the whole ring 
- a high diameter 
 

- for a virtual structure, 
difficult to implement 
-need multicast (on the 
bus) for peer-to-peer 
communication 
- a high degree 
 

- it needs a special 
routing algorithm and 
names concept 
- the bottleneck is near 
the root 
- 
 

- it needs a special 
concept to expand the 
dimension 
- 
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3.2 Centralized vs. decentralized architectures 

The debate between centralized versus decentralized (also called 

distributed) architectures for multi-user applications is an old one. The two 

primary issues are performance and consistency. Decentralized 

architectures have been lauded for good performance. They require less 

network bandwidth since only input or state-changing information must be 

transmitted between nodes. Decentralized architectures also provide good 

feedback to the agents since locally initiated input is handled locally. There 

is no wait for the input to be processed by a central node and then 

transmitted out to the agents. In comparison, centralized architectures 

appear better at maintaining consistency among the other nodes. The 

central portion of the system sequences the various inputs from the other 

nodes (or agents) and ensures that every client sees the same changes at the 

same time [9]. 

Rendezvous is a good example of a centralized approach to building multi-

user systems [11] [12]. Rendezvous relies on a central abstraction 

connected via bundles of constraints, or links, to multiple views. This is 

called the abstraction-link-view paradigm (ALV) [13]. In Rendezvous, the 

abstraction and the views all run as lightweight processes within the same 

heavyweight operating system process. Every user has access to a virtual 

terminal. From this terminal thy have access to a program called the 

Rendezvous Access Point (RAP), which is their entry into Rendezvous and 

allow them to use multi-user applications or to make user-user 

communication. Assume that there are n users in a conference. If every 

user provides some sort of non-conflicting input (such as scrolling a 

window or clicking the mouse at the virtual terminal), then O(n²) messages 

are sent through the network. Any single message requires one 

transmission to the abstraction and n-1 transmissions from the central 

abstraction to the other views. For each user of n users to send a message 

(n messages), this becomes n*(n-1) = O(n²). 
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The price in network usage, though, is not without merit. Rendezvous 

provides a reliably consistent view to each user. In fact, the communication 

mechanism worked so well that some applications relied on the reliable, 

sequenced broadcast of state changes even for updating the interface of the 

user who made the change [14]. This proved to be a simple and elegant 

way to write applications. 

The Rendezvous abstractions and views described above actually ran 

within one process on a single processor. Assume that a distributed 

constraint system was implemented (as described in [12]) and that views 

ran on the users machines and not on the machine running the abstraction. 

Network traffic is still O(n²) as described  above. However, if this system is 

then implemented on a network providing reliable, sequenced multicasting, 

the network usage is vastly improved O(n) = 2*n. Any single message 

from a client would be sent over a reliable connection to the central 

abstraction and is then multicast to every other client, resulting in two 

network transmissions. For n clients, this becomes 2*n, or O(n). However, 

the overall message latency is high because the abstraction is still 

processing every message.  

In contrast, MMConf is a good example of the replicated approach to 

multi-user applications [15]. Although its performance is good (O(n) 

network messaging traffic in theory but no centralized bottleneck to add 

latency), in practice, applications built on top of MMConf quite often lost 

synchronization. In addition, applications were arbitrarily limited in their 

functionality. For example, MMConf explicitly used rigid floor control and 

token passing to avoid some of the synchronization problems. This meant 

that some users would have to wait to interact with the application or 

would not be allowed to interact with it at all. Besides user dissatisfaction, 

this floor control policy was a complicated piece of code that relied on 

unique tokens and sequence numbers to work properly--it often did not. As 
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another example, certain user-oriented features such as continuous 

scrolling were disabled, again to alleviate some synchronization problems. 

As a result, application programs presented unnatural interfaces to users or 

were less powerful than their single-user counterparts. Much of this is due 

to the fact that MMConf was not implemented with true, reliable multicast-

-instead it was implemented as best as possible on top of TCP/IP. 

 
The COMRIS infrastructure has three key conditions: communication 

(from each agent to each agent), identification and subspaces / publish 

groups. With a centralized architecture is this reachable. One problem of 

this architecture is that it is not endlessly scalable. There is a point on 

which the central node has to manage too much and the latency increases 

rapidly. A decentralized architecture has not this trouble, but in the 

COMRIS case another key problem exists. The identification and 

subspaces have to be unique and this is difficult to manage in a totally 

decentralized system, like at the MMConf project. A solution is a mixed 

architecture. For example, the Internet is such an architecture. Each 

Internet address is unique and it is possible to communicate with other 

members on the world wide web. Section 3.1 describes different 

architectures and each node means an independent kernel. If each kernel is 

connected to an amount of secretaries (and secretary pools), then it is 

possible to speak about a centralized system, because from a more abstract 

 
Figure 3-10 Centralized vs. decentralized architectures 
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point of view all kernels are together like one central node. However, what 

happens if the nodes are replaced by kernels and secretaries (or better 

secretary pools)? This is a mixed architecture, with some central parts (the 

kernels) but altogether it is decentralized.  

 

3.3 Direct connections  

Up to now, we have spoken about the distribution of traffic. All these 

structures are useful and needed for huge systems (with thousands or 

perhaps millions of agents). Another network structure, which was not 

explained, is a fully connected network. In such a network, each node is 

connected with each other node. This system has a diameter of one, but a 

degree of n (n equals number of nodes). Such a system is only workable for 

small networks and it is not very scalable. A variant of a fully connected 

network is a limited connected network. This means only a finite number 

of direct connections are possible. For example, if we say a secretary pool 

can have ten direct connections, than it is necessary that the secretary pool 

after ten connections closes the oldest one, to open a new direct 

connection.  

 

 
Figure 3-11 Example for a direct connection 
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Using direct connections, it is possible to bypass a lot of traffic around the 

kernel. The direct connections are an important part of the COMRIS 

infrastructure. Section 4.6 shows the influence to scalability. Through the 

exoneration of the kernel, the infrastructure is much more scalable (at 3 

times). In addition, the direct connections are the first step to a 

decentralized architecture. The kernel takes over just the identification task 

and the management of the subspaces / publish groups, and the forwarding 

of messages in these areas.  

 

3.4 Use subspace for address transport 

The original version of the COMRIS infrastructure for subspaces used a 

simple method to send the name of each new member. Only the name was 

transmitted, with a single message to each member of this subspace (called 

unicast), and saved in the entity-list of the secretaries. 

This method guaranteed that each member of the subspace got the 

information about a new agent. However, this is also a problem, it 

generates many messages, which have to be transferred over the 

infrastructure. For example, if there are 10 agents and they join one after 

one in the same subspace, it creates 45 messages (1+2+3+..+9) to tell the 

existing members of the subspace “There is a new agent”. For 100 agents 

in a subspace it creates 4950 messages and this makes the whole 

infrastructure very busy.  

( )12
1

−+⋅−
naa

n
  

Each member of the subspace should get the information about a new 

member and therefore it is possible to use a multicast (see 2.3) for the 

transition. Now it creates only one message per entry and this unburdens 

i.e. with:  n=100, a=1 ,an-1=99 
 msg=4950 
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the infrastructure. In contrast to unicast the multicast is not reliable, but the 

probability is very high that an agent will gets this information (about the 

new agent) over another way (another subspace or direct communication).  

Another key problem of the original method is, there is not enough 

information to create a direct connection (see section 3.3), which needs an 

address with a port number. Without this information, the secretary has to 

ask the kernel all the time for the address, or the kernel to forward the 

message. To avoid this situation it is better to multicast the name, the 

address and the port of a joining agent (as presented in Figure 3-12). 

Obviously, it makes the entry message bigger, but it removes the kernel 

load. This is an important feature for the infrastructure. The subspace is 

usually used as an exchange platform for names from other agents with 

similar interests. It helps to decrease the kernel load and therefore the 

kernel is less busy for an important job. Section 4.6.3 compares the 

difference between both variants.   

 

3.5 Special name concept 

There are different ways to enhance the scalability of a system like 

COMRIS. One way is to increase the capacity of the network structure, to 

handle all the traffic over the network. Another way is it to reduce this 

traffic. Such a way is to give each agent name a special extension, to 
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Figure 3-12 unicast vs. multicast entry message 
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recognise the source of this agent. For example, in the COMRIS project 

each agent can talk with each other agent, but the secretaries do not know 

where in the network the receiver agent is. Of course, in the current project 

each agent has an entity, which should include the name, the address and 

the port. Nevertheless, sometimes this information is unknown and they 

need a lot of memory. That sometimes only a name is known is conditional 

on agent intelligence or through external input (from the real world). The 

only thing which is always available is the name of the agent.  

The idea of this special name concept is an extension of the agent name. 

For example, if agent ABC is a member of secretary pool 1, and then this 

agent gets the extension 1 (ABC#1). If the agent moves to another 

secretary pool, i.e. to secretary pool 2 the new extension is 2 (ABC#2). In 

case that this agent is a personal agent (directly connected to a real person), 

the extension is 0 (ABC#0). Normally, there is a direct connection between 

the secretary pools (see section 3.3), but this connection has the name of 

the creator agent (conditional on the programming of COMRIS). The 

problem is, if an agent (ABC) from the same secretary pool tries to make a 

connection to an agent from the other secretary pool, the infrastructure 

does not know that an older connection (to DEF) exists. The secretary pool 

1 sends the message to the kernel and this forwards the message to 

secretary pool 2, which submits the message to the mailbox of agent DEF. 

With this extension it is possible to save the connection under the universal 

secretary pool name, instead of the agent name. Now it is possible for the 

infrastructure to recognize that an agent is trying to make a link to a 

secretary pool, which already exists. The main benefit can be achieved for 

agents in secretary pools, because they are the majority in the infrastructure 

and they create the primary traffic between secretary pools. 
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To get the full effect for the COMRIS infrastructure it is necessary that this 

extension is always bonded with the agent name. Unfortunately, at this 

moment it is not longer completely realizable. The COMRIS project is to 

advance to expect of the other COMRIS partner that they implement this 

concept now. The current version of the infrastructure is using this concept, 

but the extension to the outside world is hidden. That makes it not so 

effective (see section 4.6.4). Nevertheless, this concept was very useful for 

the visualization module of the COMRIS infrastructure It is now possible 

to associate an agent to a secretary or secretary pool [10]. 
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Figure 3-13 expample for a message path 
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C h a p t e r  4  

4 Implementation, Integration and Tests 

4.1 Description of existing COMRIS infrastructure  

 After three years of development the main part of the COMRIS 

infrastructure was already implemented and working at the beginning of 

this work. The infrastructure of COMRIS is written in JAVA and each 

kernel, secretary and secretary pool is running in its own java virtual 

machine.  

The communication infrastructure enfolds 65 class-files with over 500 

methods. Due to the fact that the infrastructure was originally written in C 

and then transformed to JAVA, the object oriented approach of JAVA is 

not complete. This makes changes at the source code more complicated or 

requires implementations two or three times. At the beginning of this work, 

the COMRIS infrastructure was basically done, but only the kernel was 

used for communications between the secretaries. For the following 

implementations it was partly necessary to make some changes to the flow 

diagram. Especially the send and receive message needed a partial 

redesign. 

The general functioning of the communication infrastructure is described 

in Figure 4-1. It should show the event trace for different activities. The 

first step, after the initiation, is the registration of the secretaries and 

secretary pools and, of course, of the agents. Then it is possible to register 

the subspaces and publish groups, in which the agents can join and start to 

exchange information. If an agent finds other agents with similar interests, 

the direct communications are started. After the information exchange, it is 

necessary to send a message to the real world and to give the status of the 

information exchange to the conference member. 
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The message format is XML, which implies an XML parser is needed to 

translate the message and to figure out the next action according to this 

message. With this proper format, it is also possible to have an interface to 

other agent systems and to exchange information with them (provided in 

later versions). For example, the Visualisation Tool is using parts of the 

basic secretary method and sends and receives messages (which are based 

on XML) to get the status information about the infrastructure [10]. Due to 

the fact that the Visualisation Tool is like a secretary, but with another 

assigned task, it was necessary to implement some service routines for this 

tool. The additional methods replay the request for information of the 

visualisation tool. 
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Figure 4-1 Event trace of the COMRIS infrastructure 
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4.2 Implementation of direct connection 

 

The first thing that was implemented was the direct connection. For this 

purpose the direct connection method was integrated in the send method. 

Now, when an agent sends a message to another agent, the send method 

tries to make a direct connection. Figure 4-2 shows a message flow 

diagram. The success of the direct connection is shown later on in this 

chapter. 
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Figure 4-2 Message flow diagram for direct connetion 
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4.3 Implementation of address multicast 

 

The second implementation was the address multicast. The working 

principle is quit simple, as seen in Figure 4-3. If an agent joins in a 

subspace it is important, for the existing agents in this subspace to know 

not only the name but also the address and the port of the new agent. 

Obviously, this makes the multicast message bigger and takes more 

memory at the entity-list, but the multicast is much faster than a unicast 

message to each subspace member.  It makes the direct connection easier 
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Figure 4-3 Flow diagram for address multicast 
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and reduces the traffic over the kernel, because now it is no longer 

necessary to ask the kernel for the address of the destination agent.  

 
4.4 Implementation of special name concept 

Another update was the special name concept. This function can be 

implemented in different ways. One possibility is to enhance the agent 

name with an extension, which is represents the secretary or the secretary 

pool. For example, instead the name ABC is the new name ABC#0. The 

extension number uses the number of the secretary pool (which is always 

starting with 1) and an agent from a secretary has the number 0. With this 

model (as presented in Figure 4-4), all personal agents in a secretary have 

zero, but it does not matter, because these agents do not produce so much 

traffic and they are in the minority.  

 

The old model: If an agent tries to send a message, the direct connection 

method has to compare the name of the destination and the existing 

connection. If such a connection is not available, the method has to search 

for a connection with the same address and port number. The problem is, if 

the address and the port number are unknown by the agents. In this case, 

the message has to be sent to the kernel and forwarded to the destination. 
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Figure 4-4 each agent has an extension 
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The new model: Now, if an agent tries to send a message, the direct 

connection method looks for the extension and compares just this 

extension with existing connections to other secretary pools. This should 

reduce the comparisons and the requests at the kernel. 

Unfortunately this model is not applicable now, because the COMRIS 

project is at its end and this model needs changes not only at the 

infrastructure level. Another possibility to implement this concept is to 

expand the data set entry. The name, the address and the port number of an 

agent is saved in the dataset entry. A new entry is the extension number. 

The difference to the upper model is, this entry is saved by the secretary 

and is not visible to the outside (as presented in Figure 4-5).   
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ABC, add, port, 0
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Enity-list:
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a

b

c

d

 
Figure 4-5 the extension is saved at the secretary 
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4.5 Description of Controlled Experiments 

The Infrastructure layer provides the COMRIS agents with many different 

communication protocols. However, much of the functionality is hidden to 

provide simplicity of use. To initiate communications, the agents only need 

to talk to their dedicated Secretary, which contains an interface into the 

Infrastructure. The Secretaries and the rest of the Infrastructure, i.e. the 

central Kernel, can then deal with the mechanism of sending or receiving 

messages. It is clear therefore that the underlying speed, reliability and 

scalability of the Infrastructure are vital to the upper layers of the project. 

The following experiments aim to test the characteristics of the Java 

Infrastructure with different versions. The most important factors are 

scalability, i.e. the relationship between the size of the Infrastructure and its 

performance, and reliability. The scalability can be broken down into the 

following key areas for experimentation: 

- number of registrations 

- determine outcome of direct connection 

- determine outcome of address multicast 

- determine outcome of special name concept 

 

The size of the Infrastructure layer is limited by the 

performance/capabilities of the machine(s) that it resides on. There is, of 

course, a limit to the amount of hardware that can be dedicated to this task 

so realistic numbers of registered agents running on a single machine are 

required. Currently the Kernel acts as a central name server and resides on 

a single machine. As the Infrastructure grows the load on the machine 

running the Kernel will also grow. Measuring the performance of different 

machines, whilst running a Kernel through a large registration session, 

should give a quantified answer to how the above constraint will restrict 
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the Infrastructures performance, and how many agents can successfully 

register in a set period of time. 

The size of the Infrastructure also affects the frequency of message sending 

as there are more entities wishing to send messages. A critical point or 

bottleneck for the message sending will occur at the registration phase, 

numerous agents wishing to register with the Kernel at once. Another 

critical time is when agents join a subspace.  

When dealing with the message sending itself there are two main variables; 

the size of the messages and the frequency at which they are being sent. 

Both of which affect the message delay. Whether the messages are coming 

from one sender or from many senders, from the viewpoint of the receiving 

Secretary the only difference is the frequency of the incoming messages. 

This is because each communication socket has an independently threaded 

Connection class, which calls the Secretary when it has received a 

message. For these tests the role of the COMRIS agent has been replaced 

by a test agent to replicate all the typical functions of an agent.  

To prove that one solution makes the system more scalable than the other 

solution, it is necessary to simulate a realistic behaviour. The only way to 

do this, is to use random factors, which means that the whole test is based 

on random parameters. Of course, there are some static conditions like 

number of agents or number of sent out messages, but settings like which 

agent is in which secretary pool or which agent is doing a peer-to-peer 

connection are random. With random variables it is essential to repeat the 

tests more than one time. With enough repetitions it is possible to get a 

good average of testing results. 

The tests were ran on equivalent machines with 128Mbyte RAM, 

500 MHz processor and 100 MBit Network card on a network with the 

same speed. On the machines was installed Windows 2000 and Java 1.2.2. 
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The following test pattern was used to compare the different COMRIS 

versions. 

Start Kernel 
Start Secretary Pool 1 to xxx 
for SP1 to SPxxx 
 create yyy Agents 
 save time (start time) 
 
for SP1 only 
 create Subspace 1 to www 
 
for SP1 to SPxxx 
 for Subspace 1 to www 
  create random number R1 
  for R1 
   select random agent R2 
   join with R2 in Subspace 
 save time (time to join in a subspace) 
 
 for zzz number of messages 
  select random agent A1 (from own SP) 
  select random agent A2 form entity-list 
  send message from A1 to A2 
 save time (time to send zzz messages) 
 
this are the variable parameters: 
www – number of subspaces 
xxx – number of secretary pools 
yyy – number of agents per secretary pool 
zzz – number of messages 
 
 

All tests were repeated five times, to get a rough average. In summery, the 

tests have resulted in thousands of measured values (ca. 25000 results). 

Each test needed synchronisation between the secretary pools and the 

kernel, because it was important that each test was started and stopped at 

the same time. Furthermore, each test needed a long execution time (more 

than 36h), due to the different parameters and recurrences.  With the 

identical hardware and a fast network it is possible to disregard the 
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influence of the physical network and hardware. Performance tests with 

low speed machines (166 MHz) increased the time per measuring by a 

factor of four, but the general difference between the different 

infrastructures versions was the same as before. 

 

4.6 Results of Experiments 

4.6.1 Registration Performance 

An earlier test was trying to show the registration time for several agents. 

The test in this document could confirm these results. Figure 4-6 shows the 

time taken for up to fifty thousand registrations from one Secretary Pool to 

the Kernel. Both the Kernel and Secretary Pool are running on the same 

machine (Windows 2000). As the number of registrations increases so the 

processing of these requests slows down, this is quantified in Figure 4-7. 

 

In the results the registrations take increasingly longer time beyond one 

thousand registrations. As long as registration is reliable when overworked 
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which the results prove as no registrations failed, then such behaviour is 

acceptable. A perfectly scalable system would produce a horizontal line.  

 

4.6.2 Test direct connections 

To prove that direct connection can disburden the kernel, it was necessary 

to test an infrastructure version with and without implemented direct 

connections.  

 

Figure 4-8 shows the time to send 100 to 20000 messages between 30 to 

3000 agents, using direct connections. In comparison with Figure 4-9, 

which is using the old COMRIS version without direct connections, it 

needs 2 ½ less time to send 20000 messages between 3000 agents. In the 

Figures it is good to see the influence of the number of messages. A small 

amount of traffic does not need so much capacity from the kernel and so 

there is no big difference between both versions. In contrast, a high level of 

traffic needs too much capacity from the kernel and it is not able to forward 

all messages fast enough. 
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Figure 4-8 using direct connections 
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Figure 4-9 no direct connections 
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4.6.3 Test address multicast 

The implementation of the address multicast was not so complicated, but 

the influence to the efficiency and scalability is very high. Figure 4-10 

shows the curves of an infrastructure version with and without address 

multicast over the subspaces.  

It is easy to see that the old version increases faster than the new version 

and the time to send the multicast message is less than a 1/3 of sending 

unicast messages to each subspace member. 

 

4.6.4 Test special name concept 

The special name concept should reduce the check-ups to find existing 

direct connections between secretary pools. Figure 4-11 to Figure 4-14 

shows the influence of this concept for three and for five secretary pools.  
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Figure 4-10 influence of address multicast 
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The influence of using the name concept in Figure 4-13 is higher than in 

Figure 4-11. The reason for this behaviour lies in the number of secretary 

pools. More secretary pools mean more connections between them and this 

improves the search effects of this concept.  

The efficiency of this concept is not as high as the direct connections. One 

reason is that this is not the ideal implementation (the version which is 

using the name for the secretary pool number), but also that this concept 

needs more memory to save the additional information. 
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Figure 4-11 using name concept with 3 SPs 

3 0
3 0 0

1 5 0 0
3 0 0 01 0 0

5 0 0 0

2 0 0 0 0

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

time in sec

agen ts

messages

 

Figure 4-12 no name concept with 3 SPs 
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Figure 4-13 using name concept with 5 SPs 
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Figure 4-14 no name concept with 5 SPs 
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4.6.5 Test number of applications per machine 

Another interesting question was the influence of the java virtual machine 

(JVM) to the performance. Is it useful to start more than one secretary pool 

on the same machine, only to separate different interest groups or similar 

things? The answer is, no. Each secretary pool has its own JVM and using 

more than one secretary pool takes more memory and processing time 

from the machine. A solution is to allow to more than one secretary pool 

with the same JVM (it is to implement in the source code of the secretary 

pool). However, why should it be useful? For example, two secretary pools 

need two separate entity-lists, more memory and more processor time than 

one pool with the same number of agents. Figure 4-15 and Figure 4-16 

show the difference between one and two secretary pools on a machine 

with the same number of agents. 

 

 

4.6.6 Summery tests 

A number of observations and interpretations can be made from these 

graphs. Registration of small amounts of agents is fast. Scaling up to a 

larger number of agents and also messages shows drastic increase in time. 

Also the different kind of improvements make the communication 
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Figure 4-15 running 1 SP per machines 
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Figure 4-16 running 2 SPs per machines 
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infrastructure more scalable and let the star network work well until there 

are more then 5000 agents (which is enough for a conference with 1000 

members). 

 

The key question after all improvements is always: “Was it useful?”. 

Figure 4-17 and Figure 4-18 shows the difference between the original and 

the last updated COMRIS version. It is clear to see the new version is 2 ½ 

faster than the original. Noticeable is that the trend is obviously lower, 

which means that the load does not increase so fast. 

The kernel requires enough memory to keep a direct connection to every 

secretary in the infrastructure. Whilst the infrastructure represents a 

centralised model this is an important consideration, even though the 

secretaries are fairly independent of the kernel once direct connections are 

established. If such connection fails or if secretaries are allowed a 

maximum number of direct connections to free up their machine’s 

resources, then the kernel will still be required. Maybe the connection to 

the kernel could be an intermittent one, turned off when not required, 

freeing up the kernel’s resources. 
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Figure 4-17 original COMRIS version 
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Figure 4-18 COMRIS version with all updates 
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The charts do not show a nice linear or exponential curve. This is caused 

by two main factors. First, the fact that the curve is a result of more than 

one (kernel and secretary pools) separated java virtual machine (JVM) 

processes on top of Windows NT, which is not a real-time system and has 

to divide and schedule its resources with other applications. In addition, the 

JVM can garbage collection calls enter into a memory during execution of 

the test. Second, and more important, is the fact that the implementations 

are thread based. This means that in some cases a large number of threads 

(the application itself, direct connection, etc.) can have to perform a lot of 

pre processing but are only able to produce their output result at the next 

activation cycle. 
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C h a p t e r  5  

5 Conclusion 

5.1 Achieved status  

The biggest problem on this work was the time, due to the knowledge that 

the COMRIS project is near the end it is difficult to make elementary 

changes. Nevertheless, appropriate work was done and the scalability of 

the COMRIS communication infrastructure was increased. 

The address multicast is noticeable right at the start of the infrastructure, 

thereby the whole registration process in the subspaces and publish groups 

is faster (see 4.6.3). The direct connections are perceivable, especially in 

the running system, because the messages find the specified destination 

without any detours. The third implemented idea, the special name concept 

is only useful for bigger infrastructures with many secretary pools and due 

to the shortened implementation, not so effective. The kernel itself is now 

able to handle a significantly higher load than at the beginning of this 

work. Therewith the whole system is able to handle higher load and the 

message delay time is reduced. 

Altogether, the scalability of the communication infrastructure was 

increased by a factor of two and a half to three. There were also some 

methods implemented, which are necessary for the visualisation tool [10]. 

The test process discovered some errors at the programming of the 

infrastructure (some functions were used twice), which were removed 

immediately. 
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5.2 Commendation 

Over time, it showed that some ideas are useful and some are not so useful 

for such an agent system. Therefore, it is adverse to use bus or tree 

topologies. They have a potential bottleneck and they have some 

implementation problems. At the end it always depends on the size of the 

agent system. For example, a small conference with 100 – 1000 members 

is not a problem for the star topology, especially not with some additional 

concepts like the direct connection and the address multicast. Should it be a 

bigger conference, it is necessary to have a more flexible infrastructure. In 

the star network the central node is always the bottleneck and, in addition, 

direct connections are not endlessly useful. Each direct connection takes 

the same memory and it needs time to search an existing direct connection. 

Thus it is better to use a more decentralized architecture, like the ring or the 

hypercube. 

The work on the infrastructure has shown that it is easy to say “we enhance 

the scalability”, but it is difficult to realise this aim. How scalable an 

infrastructure can be is decided in the design and with the specification. It 

is always difficult to implement changes in a sophisticated stadium. 

Another important conclusion is that not only the look of the infrastructure 

can enhance the scalability. This means that the complete system has to be 

well balanced. In addition to the infrastructure it is also important that, for 

example, the agents use techniques to reduce the traffic. So it is perhaps 

possible to implement message-filter algorithms to make the O(n²) 

transport problem to a O(n) transport problem. 
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5.3 Perspective 

With the end of this work, the COMRIS project has already finished. Thus 

there is no further work to do in direct connectivity to COMRIS. However, 

there are some ideas that can be prosecuted in additional studies. This 

document tries to show the different design possibilities for the COMRIS 

infrastructure. Further work could try to test the different topologies and to 

prove that a hypercube is more scalable than a star or a ring. 

Another concept, which was not described in this work, is load balancing 

for distributed architecture [16]. Load balancing collects system state 

information and assigns or redistributes the application tasks among the 

processors of a parallel computing system in order to maximise overall 

throughput and stabilise response times. However, it could be used also to 

assigns the traffic of a communication infrastructure like COMRIS. This 

can be performed either by a central component supervising the entire 

system, by cooperating pre-processor load balancing agents or by 

cooperation of load balancing agents, each of them controlling a part of the 

processing system. 

It is also imaginable that the traffic through the infrastructure is finding its 

way with a special routing strategy. For example, if a connection between 

two secretary pools overloaded, it needs more time for sending a message 

between two agents in this pools. A special algorithm could analyse the 

traffic and could bypass new messages over another path. This path maybe 

longer, but free and thus the message can reach the destination earlier. 
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