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Abstract. Collaboration and teamwork is important in many areas of our lives.
People come together to share and discuss ideas, split and distribute work or help
and support each other. The sharing of information and artefacts is a central part
of collaboration. This often involves the manipulation of shared objects, both se-
quentially as well as concurrently. For coordinating an efficient collaboration, com-
munication between the team members is necessary. This can happen verbally in
form of speech or text and non-verbally through gesturing, pointing, gaze or facial
expressions and the referencing and manipulation of shared objects. Collaborative
Virtual Environments (CVE) allow remote users to come together and interact with
each other and virtual objects within a computer simulated environment. Immer-
sive display interfaces, such as a walk-in display (e.g. CAVE), that place a human
physically into the synthetic environment lend themselves well to support a natural
manipulation of objects as well a set of natural non-verbal human communication,
as they can both capture and display human movement. Communication of track-
ing data, however, can saturate the network and result in delay or loss of messages
vital to the manipulation of shared objects.

This paper investigates the reality of shared object manipulation between remote
users collaborating through linked walk-in displays and extends our research in [27].
Various forms of shared interaction are examined through a set of structured sub
tasks within a representative construction task. We report on extensive user-trials
between three walk-in displays in the UK and Austria linked over the Internet using
a CVE, and demonstrate such effects on a naive implementation of a benchmark
application the Gazebo building task. We then present and evaluate application-
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level workarounds and conclude by suggesting solutions that may be implemented
within next-generation CVE infrastructures.

Keywords: CVE, shared object manipulation, communication, IPT, immersive
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1 INTRODUCTION

Advances in immersive display devices are ensuring their acceptance in industry as
well as research. Within an immersive device, a user may walk around an object,
move the body and head to examine it from every angle and manipulate it with the
hand. Walk-in (CAVE-like) displays increase this naturalness by allowing you to see
your own body within the environment. They allow a user to see his body within
the spatial context of the environment. A virtual object can actually be walked up
to, around, reached for and manipulated in a highly intuitive way.

Many team related tasks in the real world centre around the shared manipulation
of objects. A group of remote users can be brought into social proximity to inter-
actively share virtual objects within a Collaborative Virtual Environment (CVE).
CVEs are extensively used to support applications as diverse as industrial design
review, medical simulations, military training, online games, and social meeting
places. A user’s real body may be situated within a group of remote users congre-
gated around a shared object by linking walk-in immersive displays through a CVE
infrastructure. This allows each team member to use their body within the space to
interact with others and virtual objects. The spoken word is supplemented by non
verbal communication in the form of pointing to, manipulating and interacting with
the object as well as turning to people, gesturing and other forms of body language.
This offers unprecedented naturalness of interaction and remote collaboration.

The actions of a remote user are often reflected through an articulated human-
like embodiment, the avatar. Driving an avatar from motion tracking of a user within
an immersive display device considerably improves non-verbal communication. The
high frequency of tracker updates can, however, saturate the network resulting in
delay or loss of other messages describing vital interactions with shared objects,
which synchronise or trigger actions and are essential for steering the application.
The constraints of network technology and the CVE system can make the experience
of shared interaction both disappointing and frustrating.

This paper investigates the reality of shared inter action of common objects
between users in distributed immersive walk-in displays and presents solutions to
address the effects of remoteness. Various forms of shared object manipulation and
human interaction are examined through a benchmark application that employs the
structured task of building a Gazebo. We report on a number of trails between three
walk-in displays in the UK and Austria. These were linked over the Internet using
the DIVE-Spelunk immersive CVE [33]. This paper is an extension to [27].
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1.1 Related Work

Various forms of interaction with shared objects have been considered. A simple ball
game is using prediction to overcome the effect of network delays in a football game
between UK and Germany [23]. The advanced ownership transfer allows instanta-
neous exchange of a ball between players in competitive scenarios. In IEEE 1516
concurrency control is defined to allow various attributes of a given object to be
affected concurrently by distinct users. Sharkey et al. describe optimisations above
the standard that allow control of an artefact to be passed to a remote user with
little or no delay [31]. A hierarchy of three concurrency control mechanisms is pre-
sented in [18] to tailor the problem of “surprising” changes during closely coupled
collaboration. A virtual tennis game is played between remote sites in Molet et al.
and Basdogan et al. investigate the importance of haptic interfaces for collaborative
tasks in virtual environments [19, 1]. The authors state that finding a general so-
lution to supporting various collaborative haptic tasks over a network may be “too
hard”. A distinction is made between concurrent and sequential interaction with
shared objects but this is not discussed further. As with Choi et al. [7] a spring
model is used to overcome network latencies to support concurrent manipulation of
a shared object. Four classes of shared behaviour: autonomous behaviours, synchro-
nised behaviours, independent interactions and shared interaction are introduced by
Broll [3]. Levels of cooperation within CVEs have been categorised by a number
of research groups in similar ways: Ruddle et al. described the different levels of
cooperation as level 1 – co-existence and shared-perception; level 2 – individual mo-
dification of the scene; and level 3 – simultaneous interactions with an object [28].
A similar taxonomy was presented for haptic collaboration that describes the respec-
tive levels as static, collaborative and cooperative [5]. Our studies provide a more
detailed taxonomy of level 3, which will be described later.

The COVEN project [12] undertook network trials of large scale collaborative
applications run over the DIVE [6] CVE infrastructure. This produced a detailed
analysis of network induced behaviour in CVE applications [13]. DIVE was ported
to cave-like display systems [33] and consequently an experiment on a non-coupled
interaction task with two users in different walk-in displays was found to be very
successful [30]. It was shown that closely coupled concurrent inter action with
a shared object was not possible with CVE technology in 1995 [2]. However, causal
surface manipulation allows two users to carry a shared object while hiding the
effects of latency through gradual deformation [29].

Recent work investigated carrying a stretcher by allowing the material to follow
the handles [20]. The work concludes that, although the Internet2 [15] has sufficient
bandwidth and levels of latency to support joint manipulation of shared objects, the
CVE did not adequately address the consistency issues arising from the networks
characteristics.

Immersive displays place a user in a spatial social context allowing natural first
person observations of remote users interacting with objects. This improves human
communication and the work within such an environment, and when connected
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with other non-immersed users it can be observed that the immersed user adopts
a leadership role [32, 34].

1.2 Principles of Distribution within CVEs

A key requirement of Virtual Reality (VR) is the responsiveness of the local sys-
tem. Delays in representing a perspective change following a head movement are
associated with disorientation and feelings of nausea. A CVE system supports a po-
tentially unlimited reality across a number of resource-bounded computers inter-
connected by a network. The network, however, can induce perceivable delays in
updating a distributed simulation. Key goals of a CVE are to maximise responsive-
ness and scalability while minimising latency. This is achieved through localisation
and scaling.

CVE
System

CVE
System

Local
Simulation

Remote
Simulation

Events

Fig. 1. Localisation through distribution

Localisation is achieved through replicating the environment, including shared
information objects and avatars, on each user’s machine. Sharing experience requires
that replications be kept consistent. This is achieved by sending changes across
the network in the form of events (see Figure 1 for an illustration of localisation).
Localisation goes further than simply replicating that state of the environment; it
also includes the predictable behaviour of objects within it. The organisation and
content of a scenegraph is optimised for the rendering of images. Although some
systems [17, 35] directly link scenegraph nodes across the network, most systems
introduce a second object graph to deal with issues of distribution. Known as the
replicated object model, we will from here on refer to it as the replication and to its
nodes as objects. Objects contain state information and may link to corresponding
objects within the local scenegraph.

A virtual environment is composed of objects, which may be brought to life
through their behaviour and interaction. Some objects will be static and have no
behaviour. Some will have behaviour driven from the real world, for example users.
Alternatively, object behaviour may be procedurally defined in some computer pro-
gram. In order to make a CVE attractive and productive to use it must support
interaction that is sufficiently intuitive, reactive, responsive, detailed and consistent.
By replicating object behaviour we reduce dependency on the network and therefore
make better use of available bandwidth and increase responsiveness. Early systems
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replicated object states, but not their behaviour. Each state change to any object
was sent across the network to every replica of that object.

1.3 Natural Communication and Interaction

Immersive environments support social human communication (SHC) in an unprece-
dented way that draw on universal primitives in the way people understand things,
events, relationships and information. We are embodied beings, for which meaning
ultimately resides in bodily experiences, which is a virtue difficult to archive on
a desktop and because of this, immersive displays naturally support social commu-
nication and interaction. We have evolved to act in the physical world and how
we are able to understand abstract information is derived from this capacity. If we
design for embodiment and immersion, understanding and communication comes
free, which is the first step in creating a system that supports our natural way to
socially interact with each other.

Social communication is a dynamic process that has been under investigation for
many years by both psychologists and sociologists. It can be categorised into four
basic forms: verbal and nonverbal communication and the role of objects and the
environment in communication [4, 16]. Those forms of SHC are differently supported
by technology allowing us to communicate and interact with others (Table 1).

Forms of
SHC

Example Telephone Video-
conference

Typical
CVE

Immersive
CVE

verbal natural speech natural natural natural natural
non-
verbal

gesture, posture
and facial
expression

not
available

natural unnatural natural

objects artefacts of
interest, person
and non-person
related

not
available

not
shared,
natural

shared,
unnatural

shared,
natural

environ-
ment

set the scene for
natural
collaboration
and
communication

not
available

look into
other’s

look into
shared

physically
situated in
shared

Table 1. Supporting SHC across distance

A system that does not constrain us or forces us to change our behaviour should
be the ultimate objective for creating a CVE that is efficient and socially involving,
and the current status of technology leaves us a long way to go before we can archive
this goal.
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1.4 Road Map

This paper uses the structured task of building a Gazebo to examine various forms
of shared object manipulation between users in distributed walk-in devices. The
Gazebo, along with lessons learnt in prototyping, is presented in Section 2. Re-
visions to the application and CVE, along with a detailed analysis of the effect of
network delays, are given in Section 3. Section 4 discusses our findings and Section 5
concludes and suggests how a CVE could be improved to overcome our problems
without resorting to application level constraints.

2 THE GAZEBO PROTOTYPE

We have designed the structured task of building a gazebo in order to examine
distinct scenarios of sharing the manipulation of an object and as a benchmark for
further investigations. This section introduces the original Gazebo, describes how it
was tested between the UK and Austria and how results of these lead to a rethink.

A Gazebo is a simple structure that is often found at a vantage point or within
a garden. A typical working environment containts materials, tools and users.
Wooden beams may be inserted in metal feet and united with metal joiners. Screws
fix beams in place and planks may be nailed to beams. Tools are used to drill holes,
tighten screws and hammer nails. To complete the Gazebo, tools and materials must
be shared in various scenarios of shared object manipulation, distinct in the method
of sharing attributes. Scenarios include planning, passing, carrying and assembly
(see Table 2). The time taken to complete each scenario is a measure of the success
of collaboration.

Scenario Fig. Description Method of sharing
planning 2 a) discussing how to proceed referencing objects and envi-

ronment
passing 2 b) a tool or material is passed

from one user to another
sequential sharing and mani-
pulation of the same object
attribute

moving 2 c) a wooden beam is too heavy
to lift alone requiring one user
to lift each end

concurrent sharing of object
through the same attribute

assembling 2 d) a wooden beam must be held
in place by one user, while an-
other fixes it by drilling a hole
and inserting a screw

concurrent sharing of an
object through distinct
attributes

Table 2. Scenarios of object sharing

These scenarios are a more detailed taxonomy of level 3 of the categorisation
of Ruddle et al. [28], which the authors describe as simultaneous interactions with
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an object. We extend this with the method of sharing attributes during object
manipulation, as summarised in Table 3.

Timing Manipulated Attributes
sequentially
concurrently

distinct same

Table 3. Methods of sharing object attributes

2.1 Building the Gazebo

On logging in, the user is placed in a garden strewn with building materials and
tools. Avatars appear, as the rest of the team enter the garden. “Wonder”-stacks
keep the building site tidy by creating materials on demand. A user can take material
from a nearby stack and start to build the Gazebo. In the real world, constructing
a Gazebo on your own is not an easy task. To simulate the task as in the real
world we introduced some constraints. The simulation of gravity prohibits leaving
materials in thin air and makes some materials too heavy to lift alone. The only
task a single person can undertake is to drill holes and fit nails or screws. Moving,
positioning and building all require teamwork. For example, one user must hold
a joiner in place so that another user can fix it with a screw. In the following
sections, we examine the four scenarios of planning, passing, moving and fixing, as
summarised in Table 2, more in detail.

2.1.1 Planning and Instructing

The task of building the Gazebo routinely requires communication of the referencing
of objects as well as the place within the environment that they are to be taken,
(see Figure 2 a). Communication of referencing must reflect nuances of speech and
gesture and the interface must not restrict the recipient from capturing these. When
using a walk-in display, control of gaze and pointing are driven through a tracking
system and the user is surrounded by the display surface to the front, both sides and
the floor. The complexity of the task requires the collaborative planning of a number
of steps, which may involve several collaborators and objects. A wide field of view
and direct control and communication of gaze and pointing should allow efficient
referencing, location and identification of each.

2.1.2 Passing a Tool

A hand-held “multi”-tool can be fitted with the necessary attachments for construc-
tion. A drill makes holes in wood and metal, a screwdriver tightens screws and
a hammer hammers nails. The garden only contains a single tool so that users will
need to pass it between each other. Ideally, only one user can hold the tool at
a time but can pass it smoothly to another user. Passing the tool (see Figure 2 b)
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Fig. 2. Collaborative scenarios when building a gazebo. a) Planning and Instructing,
b) Passing a Tool, c) Moving a Beam, d) Fixing a Beam

demonstrates sequential manipulation of the movement attribute as well as that of
ownership. (With movement attribute we refer to position and orientation, which
may also be described by a path communicated between replicas.)

2.1.3 Moving a Beam

A wooden beam is artificially made too heavy to lift alone requiring one user to lift
each end (see Figure 2 c). This demonstrates the concurrent manipulation of the
movement attribute of the beam. Ideally, when two users attempt to drag the beam
in opposing directions, it should move to a mean position between them.

2.1.4 Fixing a Beam

Beams can be united with a metal joiner and screws. A joiner may be attached to
a beam by drilling a hole through both and fixing with a screw. A second beam can
then be fitted into that joiner in a similar manner. One person must hold a beam
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while it is attached to prevent it falling (see Figure 2 d). This demonstrates that one
user is able to affect the attribute for fixing while another affects those of movement;
in other words, the concurrent sharing of distinct attributes.

2.2 Application Design

The Gazebo application was developed to work over the DIVE CVE [6]. DIVE was
chosen because firstly, it is a well-established and widely accepted CVE platform, and
secondly because of the ease of application development. The immersive extension
Spelunk [33] allowed us to link various combinations of walk-in displays and desktop
systems.

The application is implemented as a set of interactive objects. Three classes
of objects were needed: avatars, materials and tools. Each object has a graphical
representation and all have scripted behaviours that match their purpose. In DIVE,
all objects are structured hierarchically in a distributed database. Their current
state is represented by attributes, which may be brought to life by user-defined
object behaviour scripts. All behaviour scripts are reactive and triggered by specific
DIVE events. These are update messages, generated by the CVE system to update
replicated versions of the distributed virtual environment. DIVE supports several
event types. These include object transformation events, such as movement or
rotation; object interaction events, such as grasp, release or select events; object
collisions; and changes to object-specific properties and flags. Most functionality
of the Virtual Gazebo is triggered by collisions of material and tool objects. For
example, when a drill tool is held closely to a material object so that they collide,
the resulting collision event, generated by the system, would trigger a procedure in
the material object’s behaviour script to increment a “hole-counter” property.

2.2.1 Object Behaviour

One behaviour that all objects implement is reacting to gravity. For simplicity, the
objects just move back to ground level when released, rather than following a path
with increasing velocity. There is no collision detection during the fall. In some
cases, reaction to gravity is deactivated. This happens when the object is a material
that has been fixed to another material, which is signalised by the fixed-flag of that
object . In case of a nail or screw that has been stuck into a material part, the
stuck flag would deactivate gravity of this object as well. A simplified script for the
gravity behaviour would look like this:

React to gravity {

If (NOT stuck OR fixed) {

Calculate distance to ground

Move by this distance

}}
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Avatars are used to represent a user inside a virtual world. The immersive
extension of DIVE, Spelunk [33], gives support for lifelike avatars, by which the
tracking data of the display is used to animate the tracked body parts. Most im-
mersive displays support tracking of the head and both or at least one hand. This,
in combination with a simple inverse kinematics algorithm within Spelunk, allows
the representation of arm-articulation for gesturing or pointing, as well as gaze or
nodding with the head. For the distribution of those movements the DIVE inter-
nal distribution-layer is extended to permit multi-transform messages. This allows
sending multiple transformations, for example that of an arm movement, in a sin-
gle message. We have used both rigid and jointed body avatars in our tests. The
rigid body shows no movement except locomotion of the entire body. The second
one supports articulated head and arm articulation. Head and hand movement is
controlled by live tracking data from the user within an immersive walk-in display.

Materials are the building blocks of the benchmark application. They consist of
planks, beams, and joiners to connect beams, nails and screws. Tools, like hammer,
drill and screwdriver, are used to interact with the materials. Planks and joiners can
be moved by one person, whereas beams have to be lifted by at least two persons.
This simulated weight is achieved by counting the number of acting users in the
beam’s script. If less than two users are grasping it, it just pretends to be released
and moves back to ground. If more than two users are grasping, it follows the hand
movements of the users. Here, a convergence of the beam’s position between the
hands is expected. A simplified script would look like this:

Grasp {

Increment acting users

}

Move {

If (Acting users > 1)

React to gravity

Else

Align and update

}

Planks, beams and joiners are fixed by simply letting them not react to gravity
anymore when released. Before fixing a plank, a nail has to be inserted and collide
with the hammer, whereas for fixing beams with joiners a screw and the screwdriver
are used. Tool objects interact directly with behaviour scripts of nails and screws.
When these collide, the tool sends a signal to the nail or screw’s behaviour script that
tells them to perform a fix-procedure. Nails and screws, in turn, interact directly
with the other material parts when they fix them. Nails can always be inserted into
a plank. As soon as they collide, the stuck flag of the nail is set and its gravity
behaviour is deactivated. A screw, however, requires a hole. This is realised by
a holes-counter in material parts that increases on collision with a drill tool. If the
screw collides with a beam or joiner with a hole, then it will fit in place. Once in
place it be can tightened with a screwdriver.
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Fig. 3. In the centre: a screw intersecting a beam and a joiner. On the right: a screwdriver
about to collide with the screw

Screws may fix more than one material object at once if they are inserted in
overlapping objects (Figure 3). However, until the parts are not fixed they may still
move. For instance, the supporting person may wobble the hand that holds a beam
so that the beam is not positioned exactly inside the joiner. We want to fix only
those parts that intersect with the screw. For intersection testing we need to know
which objects are involved. So, when nails or screws collide with material parts,
they keep those names in a list. On a fix command, initiated by a colliding tool,
this list is then used to test for intersections with once collided objects. A simplified
behaviour script for a screw looks like:

Check collision{

If (colliding with material AND

spare holes in collided object)

Add to intersection list;

}

A better understanding of the application may be gained through Table 4, which
details the various object attributes that define the shared behaviours of our objects.
These are added to the default attributes such as position, rotation, parenting and
graspable.

DIVE provides loose consistency in which events are sent via fast but unreliable
multicast messages, relying on eventual convergence of the replicas. The DIVE/Tcl
scripts are distributed and executed once on each remote node, ensuring an identical
initial state. However, when DIVE events occur, an event notification will run on
that node only where it occurred. The distribution layer of DIVE is responsible
for delivering this event to all other nodes so that they update their simulation.
Distribution of a shared environment introduces the possibility of inconsistency,
caused by latency and message loss. Inconsistencies between remote replications of
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Attribute Purpose Effect of critical divergence
all objects
“falling” applies gravity to an object would stay in the air when re-

leased
“users” count number of acting users to

simulate mass
would not be movable

all materials
“fixed” fix two materials together by dis-

abling further manipulation and
gravity

would still fall down or be still
graspable although fixed

beam, plank and all joiners
“holes” count number of holes screws could not be inserted if

hole did not appear
screw and nail
“coll list” remember collided objects for

intersection testing when fixing
parts

would not fix some parts

“stuck” signalise state for fixing parts and
impact of gravity

would fall down and not stay in
or allow fixing a part

power tool
“curr tool” handle to currently active attach-

ment
would apply incorrect attachment

Table 4. Shared attributes and the effect of divergence

attributes may lead to divergent behaviour of a shared object, creating confusion
between users.

Most functionality in the Gazebo is based on collisions. It has been tried to
optimise the object scripts so that they apply incoming events only, when they
make any sense. For example, a screw would fix parts only, when it collides with
a proper tool, in this case a screwdriver. Several tasks require a certain order of
events to occur. For example, a beam must first have had contact with a drill to
increase its holes counter, before a screw can be inserted and then tightened with
a screwdriver. When the collision signals do not arrive in order, the logic of the
behaviour scripts would “not be matched” and the current task cannot be finished
without repetition.

It has been tried to give visual feedback of arrival of events. This was imple-
mented by flashing objects to signalise that an action has taken place. If respon-
siveness of the CVE system is low, it is expected that the human can adapt. In the
real world, tasks are synchronised via natural communication or repeat task. Both
natural communication between users and visual feedback helped to synchronise
structured tasks. This way, synchronisation between the tasks is supported by the
application’s semantic.
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2.3 Experimentation

The prototype Gazebo application has been tested between walk-in display devices
in Europe. The majority of trials were undertaken between walk-in displays at the
University of Reading (UK) and Johannes Kepler University Linz (Austria). On
two occasions, these were joined by another at University College London (UK) and
since recently from the University of Salford. Further desktop users often joined from
Reading and Linz. Spelunk, an immersive extension to the DIVE CVE [33], was
used to link the walk-in displays. Here, we present findings of the first application
prototype which was regularly tested between sites over a three week period.

DIVE uses multicast, which is used extensively by many CVE systems to in-
crease scalability of group communication. Although multicast works within a lo-
cal area network, it is usually necessary to tunnel multicast packets between local
area networks, particularly when they are separated across the Internet. DIVE
proxy servers [11] were used to tunnel packets between local area networks at each
site. Audio communication was supported through the UCL Robust Audio Tool
(RAT) [14].

2.4 Results

Using the prototype Gazebo, each user was able to interact with objects successfully
and it was generally easy to interpret what remote users where doing, especially with
the support of audio communication. This reinforces the findings of other work,
like [13]. The actions and gestures of tracked users were much easier to understand
than those of desktop counterparts.

Two problems, however, severely hampered collaboration around shared objects:
Firstly, the (although lose) ownership mechanism in DIVE made it difficult for two
users to carry a beam concurrently. Secondly, many important interactions with
shared objects were not being reflected remotely, such as creating objects or grasping
parts. With these problems it was very difficult to build the Gazebo. We lightened
the beam so that one user could lift it and undertook user trials to see what could
be achieved. Users in a link-up between the three walk-in displays achieved what
resembled a sloppily constructed corral or sheep pen. A series of later test between
Reading and Linz with users of various experiences did not improve upon this. In
addition we had communication problems, as it was not always clear if an action
such as drilling a hole was successful due to the lack of feedback.

An investigation was undertaken into the loss of remote representation of inter-
actions with objects. The effects of a remote user’s interaction with an object were
seldom presented. This was most apparent with the following interactions: creat-
ing a material from a “multi”-stack; picking; passing; drilling holes; inserting nails
or screws and switching tool attachments. Unlike the above user-to-object interac-
tions, movement was always represented remotely. The primary difference between
the two is the frequency and importance of updates. Our avatar’s movement was
represented by a continuous stream of position and orientation events. The effect of
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losing movement events in transit is an increase in the jerkiness of avatar movement,
something an observer can cope with. In contrast, the effect on an object of user
interactions is communicated by a short burst of events, that if lost will result in
a lack of remote representation.

We undertook extensive tests to verify a hypothesis of event loss and why
this should be a particular problem for shared manipulation between walk-in dis-
plays [36]. The movement of avatars, materials and tools all increased during shared
manipulations, causing bursts of events at exactly the time when reliability and low
latency were needed. These bursts were evident in latencies rising to several seconds
for scenarios such as fixing beams with a joiner. We found that the problem did not
arise when representing a desktop user interacting with an object. The avatar used
to represent a desktop user is simpler than that used for the user of a walk-in display.
We tried a simpler avatar to represent the immersed display user and found this to
solve the problem. The new avatar had less moving parts and thus produced less
network traffic to update. Although this avatar solved one problem, its simplicity
made human-like, non-verbal communication much harder.

A follow-up investigation revealed that with every tracking update the whole
avatar body is updated and then all those updates are sent over the networks in-
tegrated in multi-transform messages. The original reason was to have a correct
representation of the avatar on remote sites. However, this produces a much bigger
amount of movement events as the simple transfer of the head and hand position.
The later and a remote calculation of the complete avatar may reduces accuracy,
needs more computational power on remote sites, but would drastically reduce the
event traffic created by the immersive user. Unfortunately, the current implemen-
tation of Spelunk within DIVE makes it not an easy task to disentangle the source
code and to implement the last suggestion.

DIVE incorporates an optional reliable message service, Scalable Reliable Mul-
ticast (SRM) [10]. When enabled, SRM ensures all messages from that user’s device
are delivered. Enabling SRM, while using the more complex avatar, ensured the
representation of the effect of remote interactions with an object. The drawback of
using SRM was a lag of greater than a second in the representation of the actions
of a remote user, including movement and interaction.

3 IMPROVED GAZEBO

The earlier trials showed that the implementation of the Gazebo prototype applica-
tion lacks heterogeneous mechanisms for concurrent sharing of objects. The reason
for this can be found in the ownership transfer when grasping an object. This is to
avoid consistency problems in interactive environments. Both, DIVE and Spelunk,
implement this in particular ways. Spelunk implements manipulation of a selected
object through a change in parenting within the scene graph. The selected object,
in this case the beam, is detached from its parent and re-attached as a child of
the user’s virtual hand. The virtual hand follows tracking information from the
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wand held by the user. Therefore, a script managing the beam’s height according
to gravity would have no effect, as the position is always overwritten by data from
the wand. This has also the implication that users in two linked walk-in displays
cannot manipulate a shared object at the same time. DIVE simply adds trans-
lation data, derived from translations of the mouse, to the transformation matrix
of an object. Many users can, however, manipulate an object concurrently. An
object that is being carried can be manipulated with respect to the carrier. To
overcome this problem, intermediate carrying objects have been implemented to
support cooperative manipulation of the beam. Now, two carrying tools attract the
beam to align its position and orientation between the two. With this solution,
hierarchy changes affect the tool instead of the beam, enabling concurrent manipu-
lation.

The second fundamental problem we experienced during our tests was the loss
or disorder of critical messages that disturb the consistent state of the environment.
The effects of a remote user’s interaction with an object were seldom presented.
These occurred mostly at hierarchy changes, e.g. when creating new objects at run-
time or switching the attachments of a multi tool. An investigation was undertaken
into the loss of remote representation of interactions with objects. The main reason
for message loss was found to be an overwhelming of movement messages for the joint
avatar generated by the tracking system in a walk-in display. Our avatar’s movement
was represented by a continuous stream of position and orientation events. The
effect of losing movement events in transit is an increase in the jerkiness of avatar
movement, something an observer can cope with. In contrast, the effect of user
interactions on an object is communicated by a short burst of events, that if lost
will result in a lack of remote representation.

Solutions for this would be firstly, reducing the tracking rate and secondly, to
simulate the arm-articulation at client side based on the head and hand position,
rather than transmitting the movement of each single limb. Both solutions are
accessible by an interface of Spelunk. Additionally, the amount of communication
between the behaviour scripts could be reduced within the application. For instance,
update messages that originated from carrying tools to affect the beam’s alignment,
were first sent at tracker update rate, which was about 10 times per second. These
have been reduced to a delivery each second, reducing considerably the jerkiness of
beam movement. To overcome problems of critical event loss the application was
constrained to avoid vital, infrequent, events. “Wonder”-stacks were replaced by
stocked material stores. The universal “multi”-tool was replaced by separate tools
to avoid the dynamic switching of state.

For supporting the synchronisation of interactions and communication, a feed-
back in form of visual clues was implemented. This feedback was a colour-change of
the drill when drilling a hole as well as adding an additional transparent coloured
aura around one end of a beam as soon as it has collided with a carry tool.

To overcome the problem of the high amount of event occurrences, introduced
by the tracking system, we enhanced our DIVE version with an event filter based
on the magnitude of movement allowed to generate an event only of movements
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Prototype Revised
Attribute Trigger event Typical occurren-

ces per scenario
Trigger event Typical occurren-

ces per scenario
“falling” move/release >100 grasp/release 1-5
“users” grasp/release 1-5 not used
“fixed” collision 1 collision 1
“holes” collision 1-10 collision 1-10
“coll list” collision 1-5 collision 1-5
“sticked” released 1 released 1
“curr id” select 2-3 not used

Table 5. Frequency of attribute modifications

above 1 cm. We found that this is a good compromise between sufficient detail to
support understandable non verbal communication and sufficient synchronisation to
achieve shared object manipulation. Many events below this seemed to be caused
by tracking jitter rather than real user movement. This reduced the frequency of
events and allowed us to use our more human-like avatar. Finally, the complexity of
application level scripts was reduced to minimise the frequency of events. Table 5
compares per scenario expected event occurrences between the original and revised
gazebo for various attributes detailed in Table 4.

3.1 Experimentation

Again we attempted to build the Gazebo in a number of linkups between the three
sites, tuning event communication to gain acceptable levels of latency and reliability.
In earlier experiments we compared the usability of the application while enabling
and disabling reliable multicast for all events [24]. Investigation of the DIVE source
code unearthed a way to map reliability to three categories of events: movement,
geometry and general (everything else). Figure 4 shows the result of a successful
collaboration of about 30 minutes.

3.2 Results

In order to obtain a workable level of reliability, while three users shared the manipu-
lation of objects, it was necessary to reduce the rate of sending of avatar movement
to the network to 5 Hz while maintaining 10 Hz for the shared objects. For example,
this was found sufficient when three users fixed a beam, one holding the beam,
another drilling the hole and a third inserting a screw. In order to gauge latency
between displays we undertook a wave test. A user at UCL moved his hand up,
down, left then right, speaking the movements as he did them. At a 5 Hz update
rate, these movements were reflected in Reading before the spoken word, suggesting
that the CVE had less latency than the audio tool. Network latencies between
Reading and UCL typically vary between 15 and 25 ms. The reduced update rate
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Fig. 4. Result of a 30 min Gazebo session

of avatars resulted in less natural movement making it harder to interpret their
actions.

Objects still became un-graspable after they had been picked by another user
but far less frequently than in the original Gazebo. The reliability of infrequent state
changes such as drilling holes and inserting screws was also increased. Infrequent
loss of such changes was often overcome through teamwork. For example, if the
creation of a hole is not reproduced at all sides, users can report this and ask
for another hole to be drilled. The introduction of a carrying tools enabled joint
manipulation of beams. Human communication and visual clues helped synchronise
lifting of the beam and choosing a direction in which to carry it. Although latency
was not apparent in avatar movement, remote manipulation of the beam was often
delayed by up to one seconds. This resulted in wild beam movement not unlike that
of a rodeo horse. The fact that only one object was affected suggests a backlog of
interpreted script events as opposed to filling of a receive buffer, which would have
effected all. A change of the tracker rate limit from 100 ms to 200 ms seemed to
solve the delay problem.

Enabling reliable multicast for all events solved the problem of event loss but
brought latency up into the order of seconds, even with avatar movement update
was set to 5 Hz. This suggests that SRM is not appropriate to our test conditions. In
the current DIVE version SRM cannot be applied to selected event types only. For
example, movement events could be send unreliable since they will be updated fre-
quently. Enabling reliability for only vital messages could solve problems of critical
event loss without incurring excessive latency.
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4 DISCUSSION

We have found that multiple tracked users sharing the manipulation of common
objects through dynamic interpreted scripts can lead to unacceptable latency and
level of reliability but have shown how this may be overcome through careful tailoring
of the application and configuration of event communication within the CVE. The
Gazebo benchmark application was constrained to avoid vital changes to shared
objects that might easily be lost, for example, minimising the dynamic creation of
objects and tools with various attachments were replaced with separate tools for
different jobs. Carrying objects addressed problems of joint ownership in terms
of hierarchy and movement. Reducing the event communication rate from 10 Hz
to 5 Hz reduced latency close to the level of perception and provided acceptable
reliability. Although problems of remoteness can be tackled in the application, it
would preferable to solve problems within the CVE itself, setting the application
programmer free of concerns of the network.

The latency we have experienced is orders of magnitude grater than that of the
network and comes from events being received faster than they can be processed.
The problem of event loss is may be related to this, arising from overflow of receive
buffers. Movement events generated from tracking are highly frequent whereas those
describing vital object manipulations, such as a pick, come in short bursts. It ap-
pears that the latter are being lost by being overwritten by the former. This problem
is exacerbated by a bucket algorithm within DIVE that throws away events when
too many are received. Although these problems arise from receiving tracking gene-
rated events from many users, they cannot be addressed with traditional scalability
mechanism such as awareness management, level of detail and augmentation. These
address scalability of large groups of users with subjective views of the environment.
Here we have a small group sharing the same view. Mechanisms within the network
level offer more appropriate answers. Categories of events, for example, may be
mapped to various qualities of service for delivery. CAVERNsoft [17], a network
framework for walk-in displays, and PING [21] organise these mappings in channels,
each of which has its own send and receive buffer. CAVERNsoft, unlike DIVE, relies
on the application programmer determining event categories. Typically one chan-
nel is dedicated for movement and another for everything else. Thus, restricting
a channel to low frequency events may decrease their latency.

The problem, however, does not stop there. Many events are causally dependent
on others sent down a separate channel. For example, many CVEs communicate
movement relative to an object’s parent, such events become invalid when the object
is picked up and those generated after the pick must not be delivered until after the
pick event. For example, in a networked ball game [26] a delayed ball movement
coming after the ball had been caught by a player resulted in the ball appearing
under the ground and becoming stuck there. Neither DIVE nor CAVERNsoft can
cope with this type of divergence. This problem was addressed in PaRADE [25],
which made a distinction between causally supportive and relative events, sending
the former reliably and ensuring any event was only enacted if causally supported.
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In addition to a causal time stamp, all events were stamped with natural (wall clock)
time, allowing superseded events to be discarded, thus reducing latency.

The results above show that traditional CVEs are no longer suitable to work
with modern technology [9] and the existing CVE requirements [6, 8, 22, 37] need to
be extended. CVEs have worked well as a scalable multi-user environment between
desktops, but the use of immersive displays with tracking systems requires a rethink
in the design of CVEs. It may be argued that the amount of interaction events has
not changed, but it is clear that movement events have done so by a large amount
and this largely to increase the natural interaction and non-verbal communication.
We postulate that extending the PaRADE approach to time management through
the use of channels would provide a level of CVE adaptation capable of support-
ing applications like Gazebo without the need for the application programmer to
worry about delay and event loss. Such a system could be improved through an
application interface and language that supports hints and reflection. Hints may
allow the application or application programmer to suggest event categories, defin-
ing acceptable latency and reliability of each as well as causal relationships between
them. Reflection allows the application’s behaviour to adapt to available qualities
of service in terms of reliability, ordering and latency. A similar philosophy was
taken in the design of PING, which unfortunately was not completed. We have
addressed those issues in our latest CVE prototype ICE (Immersive Collaborative
Environment), which implements a user interface, rendering capabilities, avatar sup-
port, and simple simulation control. ICE includes a system that allows the dynamic
re-configuration of the event-handling infrastructure called FLOW. The basic idea
behind FLOW is to provide a number of customised event-handling pipes, which
process events according to a particular consistency strategy. The strategy can be
re-configured on a per-event basis at run-time.

5 CONCLUSION

The Gazebo experiment has demonstrated that users, sharing the manipulation of
objects, can adapt to the limited effects of remoteness between networked walk-in
displays. Limiting these effects, however, required considerable effort in application
development and deployment. Although many CVEs provide mechanisms for deal-
ing with the effects of remoteness, these are barely sufficient for such linkups and
require a combination of application constraints and workarounds as well as fine
tuning of event communication. CVEs have been routinely used for linking desktop
display systems over a decade. We concur with earlier work [32] that it is easier to
collaborate with a remote user when their avatar is driven by tracking data. Walk-
in and other immersive displays are different because the users are tracked and the
communication of tracked human movement is data-intensive. This problem is ex-
acerbated by the very different data requirements of shared object manipulation,
where occasional vital events must be sent reliably and in order, often coincident
with bursts of non-vital movement events.
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We conclude that a CVE does not yet exist which is capable of supporting ap-
plications like the Gazebo across walk-in displays, without unnaturally constraining
the application and laboriously tuning event passing. Combining best practice from
CVEs such as DIVE, PaRADE and PING could overcome the critical problems of
remoteness, such as minimising the effect of latency while providing sufficient levels
of reliability and causality. Network latencies will always be perceptible for some
forms of shared manipulation. Application workarounds such as intermediate ob-
jects, prediction [25], or causal surface manipulation [29] can help to reduce the
effect of latencies on shared manipulation.
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